• This record comes from PubMed

Glycan-specific precipitation of glycopeptides in high organic content sample solvents used in HILIC

. 2020 Aug 01 ; 1150 () : 122196. [epub] 20200528

Language English Country Netherlands Media print-electronic

Document type Journal Article

Grant support
R01 CA135069 NCI NIH HHS - United States
R01 CA238455 NCI NIH HHS - United States
S10 OD023557 NIH HHS - United States
U01 CA230692 NCI NIH HHS - United States

Links

PubMed 32485649
PubMed Central PMC7305521
DOI 10.1016/j.jchromb.2020.122196
PII: S1570-0232(20)30275-0
Knihovny.cz E-resources

The composition of a sample solvent has a crucial impact on separations in hydrophilic interaction liquid chromatography (HILIC). In this short communication, we studied the effect of an organic modifier in the sample solvent on the solubility of different tryptic glycopeptides of hemopexin and haptoglobin proteins. The results showed that the solubility of glycopeptides in solvents with a high acetonitrile content depends on the type of attached N-glycan. We observed lower solubility in larger glycans attached to the same peptide backbone, and we demonstrated that glycopeptides containing sialic acids precipitate more readily than those without sialic acid. Therefore, the sample solvent composition in HILIC must be carefully optimized for accurate quantitative data collection and for adequate separation.

See more in PubMed

Varki A, Glycobiology, 27 (2017) 3–49. PubMed PMC

Shajahan A, Heiss C, Ishihara M, Azadi P, Anal. Bioanal. Chem, 409 (2017) 4483–4505. PubMed PMC

Thaysen-Andersen M, Packer NH, Schulz BL, Mol. Cell. Proteomics, 15 (2016) 1773–1790. PubMed PMC

Kim KH, Park GW, Jeong JE, Ji ES, An HJ, Kim JY, Yoo JS, Anal. Bioanal. Chem, 411 (2019) 3009–3019. PubMed

Gaunitz S, Nagy G, Pohl NLB, Noyotny MV, Anal. Chem, 89 (2017) 389–413. PubMed PMC

Kozlik P, Goldman R, Sanda M, Electrophoresis, 38 (2017) 2193–2199. PubMed PMC

Ji ES, Lee HK, Park GW, Kim KH, Kim JY, Yoo JS, Chromatogr J. B, 1110 (2019) 101–107. PubMed

Alagesan K, Khilji SK, Kolarich D, Anal. Bioanal. Chem, 409 (2017) 529–538. PubMed PMC

Zacharias LG, Hartmann AK, Song EH, Zhao JF, Zhu R, Mirzaei P, Mechref Y, J. Proteome Res, 15 (2016) 3624–3634. PubMed PMC

Shao WY, Liu JX, Yang KG, Liang Y, Weng YJ, Li SW, Liang Z, Zhang LH, Zhang YK, Talanta, 158 (2016) 361–367. PubMed

Zauner G, Deelder AM, Wuhrer M, Electrophoresis, 32 (2011) 3456–3466. PubMed

Dominguez-Vega E, Tengattini S, Peintner C, van Angeren J, Temporini C, Haselberg R, Massolini G, Somsen GW, Talanta, 184 (2018) 375–381. PubMed

Kozlik P, Sanda M, Goldman R, Chromatogr J. A, 1519 (2017) 152–155. PubMed PMC

Tao SJ, Huang YN, Boyes BE, Orlando R, Anal. Chem, 86 (2014) 10584–10590. PubMed PMC

Kozlik P, Goldman R, Sanda M, Anal. Bioanal. Chem, 410 (2018) 5001–5008. PubMed PMC

Reiding KR, Bondt A, Hennig R, Gardner RA, O’Flaherty R, Trbojevic-Akmacic I, Shubhakar A, Hazes JMW, Reichl U, Fernandes DL, Pucic-Bakovic M, Rapp E, Spencer DIR, Dolhain R, Rudd PM, Lauc G, Wuhrer M, Mol. Cell. Proteomics, 18 (2019) 3–15. PubMed PMC

Huang Y, Nie Y, Boyes B, Orlando R, Journal of Biomolecular Techniques, 27 (2016) 98–104. PubMed PMC

D’Atri V, Novakova L, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D, Anal. Chem, 91 (2019) 873–880. PubMed

Jandera P, Janas P, Anal. Chim. Acta, 967 (2017) 12–32. PubMed

McCalley DV, Chromatogr J. A, 1523 (2017) 49–71. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...