Glycan-specific precipitation of glycopeptides in high organic content sample solvents used in HILIC
Language English Country Netherlands Media print-electronic
Document type Journal Article
Grant support
R01 CA135069
NCI NIH HHS - United States
R01 CA238455
NCI NIH HHS - United States
S10 OD023557
NIH HHS - United States
U01 CA230692
NCI NIH HHS - United States
PubMed
32485649
PubMed Central
PMC7305521
DOI
10.1016/j.jchromb.2020.122196
PII: S1570-0232(20)30275-0
Knihovny.cz E-resources
- Keywords
- Glycopeptides, Hydrophilic interaction liquid chromatography, Solubility,
- MeSH
- Acetonitriles chemistry MeSH
- Glycopeptides analysis chemistry isolation & purification MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- N-Acetylneuraminic Acid chemistry MeSH
- Polysaccharides chemistry MeSH
- Solvents chemistry MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- acetonitrile MeSH Browser
- Acetonitriles MeSH
- Glycopeptides MeSH
- N-Acetylneuraminic Acid MeSH
- Polysaccharides MeSH
- Solvents MeSH
The composition of a sample solvent has a crucial impact on separations in hydrophilic interaction liquid chromatography (HILIC). In this short communication, we studied the effect of an organic modifier in the sample solvent on the solubility of different tryptic glycopeptides of hemopexin and haptoglobin proteins. The results showed that the solubility of glycopeptides in solvents with a high acetonitrile content depends on the type of attached N-glycan. We observed lower solubility in larger glycans attached to the same peptide backbone, and we demonstrated that glycopeptides containing sialic acids precipitate more readily than those without sialic acid. Therefore, the sample solvent composition in HILIC must be carefully optimized for accurate quantitative data collection and for adequate separation.
See more in PubMed
Varki A, Glycobiology, 27 (2017) 3–49. PubMed PMC
Shajahan A, Heiss C, Ishihara M, Azadi P, Anal. Bioanal. Chem, 409 (2017) 4483–4505. PubMed PMC
Thaysen-Andersen M, Packer NH, Schulz BL, Mol. Cell. Proteomics, 15 (2016) 1773–1790. PubMed PMC
Kim KH, Park GW, Jeong JE, Ji ES, An HJ, Kim JY, Yoo JS, Anal. Bioanal. Chem, 411 (2019) 3009–3019. PubMed
Gaunitz S, Nagy G, Pohl NLB, Noyotny MV, Anal. Chem, 89 (2017) 389–413. PubMed PMC
Kozlik P, Goldman R, Sanda M, Electrophoresis, 38 (2017) 2193–2199. PubMed PMC
Ji ES, Lee HK, Park GW, Kim KH, Kim JY, Yoo JS, Chromatogr J. B, 1110 (2019) 101–107. PubMed
Alagesan K, Khilji SK, Kolarich D, Anal. Bioanal. Chem, 409 (2017) 529–538. PubMed PMC
Zacharias LG, Hartmann AK, Song EH, Zhao JF, Zhu R, Mirzaei P, Mechref Y, J. Proteome Res, 15 (2016) 3624–3634. PubMed PMC
Shao WY, Liu JX, Yang KG, Liang Y, Weng YJ, Li SW, Liang Z, Zhang LH, Zhang YK, Talanta, 158 (2016) 361–367. PubMed
Zauner G, Deelder AM, Wuhrer M, Electrophoresis, 32 (2011) 3456–3466. PubMed
Dominguez-Vega E, Tengattini S, Peintner C, van Angeren J, Temporini C, Haselberg R, Massolini G, Somsen GW, Talanta, 184 (2018) 375–381. PubMed
Kozlik P, Sanda M, Goldman R, Chromatogr J. A, 1519 (2017) 152–155. PubMed PMC
Tao SJ, Huang YN, Boyes BE, Orlando R, Anal. Chem, 86 (2014) 10584–10590. PubMed PMC
Kozlik P, Goldman R, Sanda M, Anal. Bioanal. Chem, 410 (2018) 5001–5008. PubMed PMC
Reiding KR, Bondt A, Hennig R, Gardner RA, O’Flaherty R, Trbojevic-Akmacic I, Shubhakar A, Hazes JMW, Reichl U, Fernandes DL, Pucic-Bakovic M, Rapp E, Spencer DIR, Dolhain R, Rudd PM, Lauc G, Wuhrer M, Mol. Cell. Proteomics, 18 (2019) 3–15. PubMed PMC
Huang Y, Nie Y, Boyes B, Orlando R, Journal of Biomolecular Techniques, 27 (2016) 98–104. PubMed PMC
D’Atri V, Novakova L, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D, Anal. Chem, 91 (2019) 873–880. PubMed
Jandera P, Janas P, Anal. Chim. Acta, 967 (2017) 12–32. PubMed
McCalley DV, Chromatogr J. A, 1523 (2017) 49–71. PubMed