Acetylcholinesterase Inhibition of Diversely Functionalized Quinolinones for Alzheimer's Disease Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SAF2015-65586-R
MINECO
UCJC 2020-03; UCJC 2020-33
UCJC
CZ.02.1.01/0.0/0.0/16_025/0007444
ERDF/ESF
SV2113-2019, VT2019-2021
University of Hradec Kralove
CA15135 MuTaLig
EU COST
PubMed
32486316
PubMed Central
PMC7312762
DOI
10.3390/ijms21113913
PII: ijms21113913
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, ChE/MAO inhibition, contilisant, dihydroquinolinones, docking, quinolinones, synthesis,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- chinolony farmakologie MeSH
- cholinesterasové inhibitory farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory MAO farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- monoaminoxidasa metabolismus MeSH
- preklinické hodnocení léčiv MeSH
- racionální návrh léčiv MeSH
- rekombinantní proteiny metabolismus MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- chinolony MeSH
- cholinesterasové inhibitory MeSH
- inhibitory MAO MeSH
- ligandy MeSH
- monoamine oxidase A, human MeSH Prohlížeč
- monoaminoxidasa MeSH
- rekombinantní proteiny MeSH
In this communication, we report the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (QN1-19) and 13 dihydroquinolinones (DQN1-13) designed as potential multitarget small molecules (MSM) for Alzheimer's disease therapy. Contrary to our expectations, none of them showed significant human recombinant MAO inhibition, but compounds QN8, QN9, and DQN7 displayed promising human recombinant acetylcholinesterase (hrAChE) and butyrylcholinesterase (hrBuChE) inhibition. In particular, molecule QN8 was found to be a potent and quite selective non-competitive inhibitor of hrAChE (IC50 = 0.29 µM), with Ki value in nanomolar range (79 nM). Pertinent docking analysis confirmed this result, suggesting that this ligand is an interesting hit for further investigation.
Faculty of Health Camilo José Cela University of Madrid 28692 Villafranca del Castillo Spain
Laboratory of Medicinal Chemistry C Juan de la Cierva 3 28006 Madrid Spain
Lilly Research Centre Eli Lilly and Company Erl Wood Manor Windlesham Surrey GU20 6PH UK
Lilly Research Laboratories Eli Lilly and Company Indianapolis IN 46285 USA
Neuropsychopharmacology Unit Hospital 12 de Octubre Research Institute 28041 Madrid Spain
Zobrazit více v PubMed
Reitz C., Mayeux R. Alzheimer’ disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014;88:640–651. doi: 10.1016/j.bcp.2013.12.024. PubMed DOI PMC
Sloane P.D., Zimmerman S., Suchindran C., Reed P., Wang L., Boustani M., Sudha S. The public health impact of Alzheimer’s disease, 2000-2050: Potential implication of treatment advances. Annu. Rev. Public Health. 2002;23:213–231. doi: 10.1146/annurev.publhealth.23.100901.140525. PubMed DOI
Citron M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov. 2010;9:387–398. doi: 10.1038/nrd2896. PubMed DOI
Scarpini E., Scheltens P., Feldman H. Treatment of Alzheimer’s disease: Current status and new perspectives. Lancet Neurol. 2003;2:539–547. doi: 10.1016/S1474-4422(03)00502-7. PubMed DOI
Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC
Rodda J., Carter J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ. 2012;344:e2986. doi: 10.1136/bmj.e2986. PubMed DOI
Oset-Gasque M.J., Marco-Contelles J. Alzheimer’s disease, the “One-Molecule, One-Target” paradigm, and the multitarget directed ligand approach. ACS Chem. Neurosci. 2018;9:401–403. doi: 10.1021/acschemneuro.8b00069. PubMed DOI
León R., Garcia A.G., Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI
Bansal Y., Silakari O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem. 2014;76:31–42. doi: 10.1016/j.ejmech.2014.01.060. PubMed DOI
Marco-Contelles J. Facts, results and perspectives of the current Alzheimer’s disease research. ACS Chem. Neurosci. 2019;10:1127–1128. doi: 10.1021/acschemneuro.9b00034. PubMed DOI
Bautista-Aguilera O.M., Budni J., Mina F., Medeiros E.B., Deuther-Conrad W., Entrena J.M., Moraleda I., Iriepa I., López-Muñoz F., Marco-Contelles J. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 2018;61:6937–6943. doi: 10.1021/acs.jmedchem.8b00848. PubMed DOI
González-Bello C. Designing irreversible inhibitors-worth the effort? ChemMedChem. 2016;11:22–30. doi: 10.1002/cmdc.201500469. PubMed DOI
Mertens M.D., Hinz S., Muller C.E., Gütschow M. Alkynyl–coumarinyl ethers as MAO-B inhibitors. Bioorg. Med. Chem. 2014;22:1916–1928. doi: 10.1016/j.bmc.2014.01.046. PubMed DOI
Gaspar A., Silva T., Yáñez M., Vina D., Orallo F., Ortuso F., Uriarte E., Alcaro S., Borges F. Chromone, a privileged scaffold for the development of monoamine oxidase inhibitors. J. Med. Chem. 2011;54:5165–5173. doi: 10.1021/jm2004267. PubMed DOI
Chimenti F., Fioravanti R., Bolasco A., Chimenti P., Secci D., Rossi F., Yáñez M., Orallo F., Ortuso F., Alcaro S. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J. Med. Chem. 2009;52:2818–2824. doi: 10.1021/jm801590u. PubMed DOI
Lemke C., Christmann J., Yin J., Alonso J.M., Serrano E., Chioua M., Ismaili L., Martínez-Grau M.A., Beadle C.D., Vetman T., et al. Chromenones as multi neuro-targeting inhibitors of human enzymes. ACS Omega. 2019;4:22161–22168. doi: 10.1021/acsomega.9b03409. PubMed DOI PMC
Tyagi R., Singh H., Singh J., Arora H., Yelmeli V., Jain M., Girigani S., Kumar P. Identification, synthesis, and control of process-related impurities in the antipsychotic drug substance brexpiprazole. Org. Process Res. Dev. 2018;22:1471–1480. doi: 10.1021/acs.oprd.8b00074. DOI
Lan Y., Chen Y., Xu X., Qiu Y., Liu S., Xin Liu X., Liu B.-F., Zhang G. Synthesis and biological evaluation of a novel sigma-1 receptor antagonist based on 3,4-dihydro-2(1H)-quinolinone scaffold as a potential analgesic. Eur. J. Med. Chem. 2014;79:216–230. doi: 10.1016/j.ejmech.2014.04.019. PubMed DOI
Sang Z., Pan W., Wang K., Maa Q., Yu L., Liu W. Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2017;25:3006–3017. doi: 10.1016/j.bmc.2017.03.070. PubMed DOI
Meiring L., Petzer J.P., Petzer A. Inhibition of monoamine oxidase by 3,4-dihydro-2(1H)-quinolinone derivatives. Bioorg. Med. Chem. Lett. 2013;23:5498–5502. doi: 10.1016/j.bmcl.2013.08.071. PubMed DOI
Nakamura T., Masuda S., Fujino A. Preparation of Dihydroquinolinone Derivatives for Use as H3 Receptor Antagonists. WO2010090347A1. 2010 Aug 12;
Godfrey A.G., Masquelin T., Hemmerle H. A remote controlled adaptive medchem lab: An innovative approach to enable drug discovery in the 21st Century. Drug Discov. Today. 2013;18:795–802. doi: 10.1016/j.drudis.2013.03.001. PubMed DOI
Tsunoda T., Ozaki F., Ito S. Novel reactivity of stabilized methylenetributylphosphorane: A new Mitsunobu reagent. Tetrahedron Lett. 1994;35:5081–5082. doi: 10.1016/S0040-4039(00)73326-0. DOI
Nowakowska Z., Kedzia B., Schroeder G. Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones. Eur. J. Med. Chem. 2008;43:707–713. doi: 10.1016/j.ejmech.2007.05.006. PubMed DOI
Malinak D., Dolezal R., Hepnarova V., Hozova M., Andrys R., Bzonek P., Racakova V., Korabecny J., Gorecki L., Mezeiova E., et al. Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. J. Enzyme Inhib. Med. Chem. 2020;35:478–488. doi: 10.1080/14756366.2019.1710501. PubMed DOI PMC
Ellman G.L., Courtney K.D., Andres Jr V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI
Cai P., Fang S.-Q., Yang H.-L., Yang X.-L., Liu Q.-H., Kong L.-Y., Wang X.-B. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer’s disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur. J. Med. Chem. 2018;157:161–176. doi: 10.1016/j.ejmech.2018.08.005. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Duffy E.M., Jorgensen W.L. Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water. J. Am. Chem. Soc. 2000;122:2878–2888. doi: 10.1021/ja993663t. DOI
Jorgensen W.L., Duffy E.M. Prediction of Drug Solubility from Monte Carlo Simulations. Bioorg. Med. Chem. Lett. 2000;10:1155–1158. doi: 10.1016/S0960-894X(00)00172-4. PubMed DOI