Acetylcholinesterase Inhibition of Diversely Functionalized Quinolinones for Alzheimer's Disease Therapy

. 2020 May 30 ; 21 (11) : . [epub] 20200530

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32486316

Grantová podpora
SAF2015-65586-R MINECO
UCJC 2020-03; UCJC 2020-33 UCJC
CZ.02.1.01/0.0/0.0/16_025/0007444 ERDF/ESF
SV2113-2019, VT2019-2021 University of Hradec Kralove
CA15135 MuTaLig EU COST

In this communication, we report the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (QN1-19) and 13 dihydroquinolinones (DQN1-13) designed as potential multitarget small molecules (MSM) for Alzheimer's disease therapy. Contrary to our expectations, none of them showed significant human recombinant MAO inhibition, but compounds QN8, QN9, and DQN7 displayed promising human recombinant acetylcholinesterase (hrAChE) and butyrylcholinesterase (hrBuChE) inhibition. In particular, molecule QN8 was found to be a potent and quite selective non-competitive inhibitor of hrAChE (IC50 = 0.29 µM), with Ki value in nanomolar range (79 nM). Pertinent docking analysis confirmed this result, suggesting that this ligand is an interesting hit for further investigation.

Zobrazit více v PubMed

Reitz C., Mayeux R. Alzheimer’ disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014;88:640–651. doi: 10.1016/j.bcp.2013.12.024. PubMed DOI PMC

Sloane P.D., Zimmerman S., Suchindran C., Reed P., Wang L., Boustani M., Sudha S. The public health impact of Alzheimer’s disease, 2000-2050: Potential implication of treatment advances. Annu. Rev. Public Health. 2002;23:213–231. doi: 10.1146/annurev.publhealth.23.100901.140525. PubMed DOI

Citron M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov. 2010;9:387–398. doi: 10.1038/nrd2896. PubMed DOI

Scarpini E., Scheltens P., Feldman H. Treatment of Alzheimer’s disease: Current status and new perspectives. Lancet Neurol. 2003;2:539–547. doi: 10.1016/S1474-4422(03)00502-7. PubMed DOI

Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC

Rodda J., Carter J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ. 2012;344:e2986. doi: 10.1136/bmj.e2986. PubMed DOI

Oset-Gasque M.J., Marco-Contelles J. Alzheimer’s disease, the “One-Molecule, One-Target” paradigm, and the multitarget directed ligand approach. ACS Chem. Neurosci. 2018;9:401–403. doi: 10.1021/acschemneuro.8b00069. PubMed DOI

León R., Garcia A.G., Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI

Bansal Y., Silakari O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem. 2014;76:31–42. doi: 10.1016/j.ejmech.2014.01.060. PubMed DOI

Marco-Contelles J. Facts, results and perspectives of the current Alzheimer’s disease research. ACS Chem. Neurosci. 2019;10:1127–1128. doi: 10.1021/acschemneuro.9b00034. PubMed DOI

Bautista-Aguilera O.M., Budni J., Mina F., Medeiros E.B., Deuther-Conrad W., Entrena J.M., Moraleda I., Iriepa I., López-Muñoz F., Marco-Contelles J. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 2018;61:6937–6943. doi: 10.1021/acs.jmedchem.8b00848. PubMed DOI

González-Bello C. Designing irreversible inhibitors-worth the effort? ChemMedChem. 2016;11:22–30. doi: 10.1002/cmdc.201500469. PubMed DOI

Mertens M.D., Hinz S., Muller C.E., Gütschow M. Alkynyl–coumarinyl ethers as MAO-B inhibitors. Bioorg. Med. Chem. 2014;22:1916–1928. doi: 10.1016/j.bmc.2014.01.046. PubMed DOI

Gaspar A., Silva T., Yáñez M., Vina D., Orallo F., Ortuso F., Uriarte E., Alcaro S., Borges F. Chromone, a privileged scaffold for the development of monoamine oxidase inhibitors. J. Med. Chem. 2011;54:5165–5173. doi: 10.1021/jm2004267. PubMed DOI

Chimenti F., Fioravanti R., Bolasco A., Chimenti P., Secci D., Rossi F., Yáñez M., Orallo F., Ortuso F., Alcaro S. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J. Med. Chem. 2009;52:2818–2824. doi: 10.1021/jm801590u. PubMed DOI

Lemke C., Christmann J., Yin J., Alonso J.M., Serrano E., Chioua M., Ismaili L., Martínez-Grau M.A., Beadle C.D., Vetman T., et al. Chromenones as multi neuro-targeting inhibitors of human enzymes. ACS Omega. 2019;4:22161–22168. doi: 10.1021/acsomega.9b03409. PubMed DOI PMC

Tyagi R., Singh H., Singh J., Arora H., Yelmeli V., Jain M., Girigani S., Kumar P. Identification, synthesis, and control of process-related impurities in the antipsychotic drug substance brexpiprazole. Org. Process Res. Dev. 2018;22:1471–1480. doi: 10.1021/acs.oprd.8b00074. DOI

Lan Y., Chen Y., Xu X., Qiu Y., Liu S., Xin Liu X., Liu B.-F., Zhang G. Synthesis and biological evaluation of a novel sigma-1 receptor antagonist based on 3,4-dihydro-2(1H)-quinolinone scaffold as a potential analgesic. Eur. J. Med. Chem. 2014;79:216–230. doi: 10.1016/j.ejmech.2014.04.019. PubMed DOI

Sang Z., Pan W., Wang K., Maa Q., Yu L., Liu W. Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2017;25:3006–3017. doi: 10.1016/j.bmc.2017.03.070. PubMed DOI

Meiring L., Petzer J.P., Petzer A. Inhibition of monoamine oxidase by 3,4-dihydro-2(1H)-quinolinone derivatives. Bioorg. Med. Chem. Lett. 2013;23:5498–5502. doi: 10.1016/j.bmcl.2013.08.071. PubMed DOI

Nakamura T., Masuda S., Fujino A. Preparation of Dihydroquinolinone Derivatives for Use as H3 Receptor Antagonists. WO2010090347A1. 2010 Aug 12;

Godfrey A.G., Masquelin T., Hemmerle H. A remote controlled adaptive medchem lab: An innovative approach to enable drug discovery in the 21st Century. Drug Discov. Today. 2013;18:795–802. doi: 10.1016/j.drudis.2013.03.001. PubMed DOI

Tsunoda T., Ozaki F., Ito S. Novel reactivity of stabilized methylenetributylphosphorane: A new Mitsunobu reagent. Tetrahedron Lett. 1994;35:5081–5082. doi: 10.1016/S0040-4039(00)73326-0. DOI

Nowakowska Z., Kedzia B., Schroeder G. Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones. Eur. J. Med. Chem. 2008;43:707–713. doi: 10.1016/j.ejmech.2007.05.006. PubMed DOI

Malinak D., Dolezal R., Hepnarova V., Hozova M., Andrys R., Bzonek P., Racakova V., Korabecny J., Gorecki L., Mezeiova E., et al. Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. J. Enzyme Inhib. Med. Chem. 2020;35:478–488. doi: 10.1080/14756366.2019.1710501. PubMed DOI PMC

Ellman G.L., Courtney K.D., Andres Jr V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Cai P., Fang S.-Q., Yang H.-L., Yang X.-L., Liu Q.-H., Kong L.-Y., Wang X.-B. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer’s disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur. J. Med. Chem. 2018;157:161–176. doi: 10.1016/j.ejmech.2018.08.005. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Duffy E.M., Jorgensen W.L. Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water. J. Am. Chem. Soc. 2000;122:2878–2888. doi: 10.1021/ja993663t. DOI

Jorgensen W.L., Duffy E.M. Prediction of Drug Solubility from Monte Carlo Simulations. Bioorg. Med. Chem. Lett. 2000;10:1155–1158. doi: 10.1016/S0960-894X(00)00172-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...