Siesta: Recent developments and applications

. 2020 May 29 ; 152 (20) : 204108.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32486661

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

Barcelona Supercomputing Center c Jordi Girona 29 08034 Barcelona Spain

Catalan Institute of Nanoscience and Nanotechnology ICN2 CSIC and BIST Campus UAB 08193 Bellaterra Spain

Centro de Física de Materiales Centro Mixto CSIC UPV EHU Paseo Manuel de Lardizabal 5 20018 Donostia San Sebastian Spain

CIC Nanogune BRTA Tolosa Hiribidea 76 20018 San Sebastián Spain

Curtin Institute for Computation Institute for Geoscience Research School of Molecular and Life Sciences Curtin University P O Box U1987 Perth WA 6845 Australia

Departamento de Ciencias de la Tierra y Física de la Materia Condensada Universidad de Cantabria Cantabria Campus Internacional Avenida de los Castros s n 39005 Santander Spain

Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain

Department of Condensed Matter Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic

Department of Mathematics University of California Berkeley California 94720 USA

Department of Mechanical Engineering and Materials Science Duke University Durham North Carolina 27708 USA

Department of Physics University of Oviedo Oviedo 33007 Spain

Donostia International Physics Center Paseo Manuel de Lardizabal 4 20018 Donostia San Sebastian Spain

DTU Computing Center Technical University of Denmark 2800 Kgs Lyngby Denmark

DTU Physics Center for Nanostructured Graphene Technical University of Denmark Kgs Lyngby DK 2800 Denmark

Institut de Ciència de Materials de Barcelona Bellaterra E 08193 Spain

Instituto de Ciencia de Materiales de Madrid ICMM CSIC Cantoblanco 28049 Madrid Spain

LCP A2MC Université de Lorraine 1 Bd Arago F 57078 Metz France

Simune Atomistics S L Tolosa Hiribidea 76 20018 Donostia San Sebastian Spain

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...