Hydrophobic Amino Acids as Universal Elements of Protein-Induced DNA Structure Deformation

. 2020 Jun 02 ; 21 (11) : . [epub] 20200602

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32498246

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund

Interaction with the DNA minor groove is a significant contributor to specific sequence recognition in selected families of DNA-binding proteins. Based on a statistical analysis of 3D structures of protein-DNA complexes, we propose that distortion of the DNA minor groove resulting from interactions with hydrophobic amino acid residues is a universal element of protein-DNA recognition. We provide evidence to support this by associating each DNA minor groove-binding amino acid residue with the local dimensions of the DNA double helix using a novel algorithm. The widened DNA minor grooves are associated with high GC content. However, some AT-rich sequences contacted by hydrophobic amino acids (e.g., phenylalanine) display extreme values of minor groove width as well. For a number of hydrophobic amino acids, distinct secondary structure preferences could be identified for residues interacting with the widened DNA minor groove. These results hold even after discarding the most populous families of minor groove-binding proteins.

Zobrazit více v PubMed

Slattery M., Zhou T., Yang L., Dantas Machado A.C., Gordan R., Rohs R. Absence of a Simple Code: How Transcription Factors Read the Genome. Trends Biochem. Sci. 2014;39:381–399. doi: 10.1016/j.tibs.2014.07.002. PubMed DOI PMC

Rohs R., Jin X., West S.M., Joshi R., Honig B., Mann R.S. Origins of Specificity in Protein–DNA Recognition. Annu. Rev. Biochem. 2010;79:233–269. doi: 10.1146/annurev-biochem-060408-091030. PubMed DOI PMC

Harrison S.C., Aggarwal A.K. DNA Recognition by Proteins with the Helix-Turn-Helix Motif. Annu. Rev. Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. PubMed DOI

Inukai S., Kock K.H., Bulyk M.L. Transcription Factor–DNA Binding: Beyond Binding Site Motifs. Curr. Opin. Genet. Dev. 2017;43:110–119. doi: 10.1016/j.gde.2017.02.007. PubMed DOI PMC

Zuccheri G., Scipioni A., Cavaliere V., Gargiulo G., De Santis P., Samori B. Mapping the Intrinsic Curvature and Flexibility along the DNA Chain. Proc. Natl. Acad. Sci. USA. 2001;98:3074–3079. doi: 10.1073/pnas.051631198. PubMed DOI PMC

McNamara P.T., Bolshoy A., Trifonov E.N., Harrington R.E. Sequence-Dependent Kinks Induced in Curved DNA. J. Biomol. Struct. Dyn. 1990;8:529–538. doi: 10.1080/07391102.1990.10507827. PubMed DOI

Davis N.A., Majee S.S., Kahn J.D. TATA Box DNA Deformation with and without the TATA Box-Binding Protein. J. Mol. Biol. 1999;291:249–265. doi: 10.1006/jmbi.1999.2947. PubMed DOI

Haran T.E., Mohanty U. The Unique Structure of A-tracts and Intristic DNA Bending. Q. Rev. Biophys. 2009;42:41–81. doi: 10.1017/S0033583509004752. PubMed DOI

Gavathiotis E., Sharman G.J., Searle M.S. Sequence-Dependent Variation in DNA Minor Groove Width Dictates Orientational Preference of Hoechst 33258 in A-Tract Recognition: Solution NMR Structure of the 2:1 Complex with d(CTTTTGCAAAAG)2. Nucleic Acids Res. 2000;28:728–735. doi: 10.1093/nar/28.3.728. PubMed DOI PMC

Rohs R., West S.M., Sosinsky A., Liu P., Mann R.S., Honig B. The Role of DNA Shape in Protein–DNA Recognition. Nature. 2009;461:1248–1253. doi: 10.1038/nature08473. PubMed DOI PMC

Yella V.R., Bhimsaria D., Ghoshdastidar D., Rodríguez-Martínez J.A., Ansari A.Z., Bansal M. Flexibility and Structure of Flanking DNA Impact Transcription Factor Affinity for its Core Motif. Nucleic Acids Res. 2018;46:11883–11897. doi: 10.1093/nar/gky1057. PubMed DOI PMC

Hancock S.P., Ghane T., Cascio D., Rohs R., Di Felice R., Johnson R.C. Control of DNA Minor Groove Width and Fis Protein Binding by the Purine 2-Amino Group. Nucleic Acids Res. 2013;41:6750–6760. doi: 10.1093/nar/gkt357. PubMed DOI PMC

Oguey C., Foloppe N., Hartmann B. Understanding the Sequence-Dependence of DNA Groove Dimensions: Implications for DNA Interactions. PLoS ONE. 2010;5:e15931. doi: 10.1371/journal.pone.0015931. PubMed DOI PMC

Dror I., Golan T., Levy C., Rohs R., Mandel-Gutfreund Y. A Widespread Role of the Motif Environment in Transcription Factor Binding Across Diverse Protein Families. Genome Res. 2015;25:1268–1280. doi: 10.1101/gr.184671.114. PubMed DOI PMC

von Hippel P., Berg O. On the Specificity of DNA–Protein Interactions. Proc. Natl. Acad. Sci. USA. 1986;83:1608–1612. doi: 10.1073/pnas.83.6.1608. PubMed DOI PMC

Rohs R., West S.M., Liu P., Honig B. Nuance in the Double-Helix and its Role in Protein–DNA Recognition. Curr. Opin. Struct. Biol. 2009;19:171–177. doi: 10.1016/j.sbi.2009.03.002. PubMed DOI PMC

Tolstorukov M.Y., Jernigan R.L., Zhurkin V.B. Protein–DNA Hydrophobic Recognition in the Minor Groove is Facilitated by Sugar Switching. J. Mol. Biol. 2004;337:65–76. doi: 10.1016/j.jmb.2004.01.011. PubMed DOI

Sandmann A., Sticht H. Probing the Role of Intercalating Protein Sidechains for Kink Formation in DNA. PLoS ONE. 2018;13:e0192605. doi: 10.1371/journal.pone.0192605. PubMed DOI PMC

Yang L., Orenstein Y., Jolma A., Yin Y., Taipale J., Shamir R., Rohs R. Transcription Factor Family-Specific DNA Shape Readout Revealed by Quantitative Specificity Models. Mol. Syst. Biol. 2017;13:910. doi: 10.15252/msb.20167238. PubMed DOI PMC

Dai Z., Guo D., Dai X., Xiong Y. Genome-Wide Analysis of Transcription Factor Binding Sites and Their Characteristic DNA Structures. BMC Genom. 2015;16:S8. doi: 10.1186/1471-2164-16-S3-S8. PubMed DOI PMC

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Berman H., Henrick K., Nakamura H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003;10:980. doi: 10.1038/nsb1203-980. PubMed DOI

Burley S.K., Berman H.M., Bhikadiya C., Bi C., Chen L., Di Costanzo L., Christie C., Dalenberg K., Duarte J.M., Dutta S., et al. RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy. Nucleic Acids Res. 2019;47:464–474. doi: 10.1093/nar/gky1004. PubMed DOI PMC

Sathyapriya R., Vijayabaskar M.S., Vishveshwara S. Insights into Protein–DNA Interactions through Structure Network Analysis. PLoS Comput. Biol. 2008;4:e1000170. doi: 10.1371/journal.pcbi.1000170. PubMed DOI PMC

Garvie C.M., Wolberger C. Recognition of Specific DNA Sequences. Mol. Cell. 2001;8:937–946. doi: 10.1016/S1097-2765(01)00392-6. PubMed DOI

Shakked Z., Guerstein-Guzikevich G., Eisenstein M., Frolow F., Rabinovich D. The Conformation of the DNA Double Helix in the Crystal is Dependent on its Environment. Nature. 1989;342:456–460. doi: 10.1038/342456a0. PubMed DOI

Schrödinger, LLC; [(accessed on 1 June 2020)]. The PyMOL Molecular Graphics System, Version 1.7. Available online: https://sourceforge.net/projects/pymol/files/pymol/1.7/

Stella S., Cascio D., Johnson R.C. The Shape of the DNA Minor Groove Directs Binding by the DNA-Bending Protein Fis. Genes Dev. 2010;24:814–826. doi: 10.1101/gad.1900610. PubMed DOI PMC

Zeiske T., Baburajendran N., Kaczynska A., Brasch J., Palmer A.G., Shapiro L., Honig B., Mann R.S. Intrinsic DNA Shape Accounts for Affinity Differences between Hox-Cofactor Binding Sites. Cell Rep. 2018;24:2221–2230. doi: 10.1016/j.celrep.2018.07.100. PubMed DOI PMC

Lu X.-J., Olson W.K. 3DNA: A Software Package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003;31:5108–5121. doi: 10.1093/nar/gkg680. PubMed DOI PMC

Wang G., Dunbrack R.L. PISCES: A Protein Sequence Culling Server. Bioinformatics. 2003;19:1589–1591. doi: 10.1093/bioinformatics/btg224. PubMed DOI

Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam Protein Families Database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC

Mann H.B., Whitney D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947;18:50–60. doi: 10.1214/aoms/1177730491. DOI

El Hassan M., Calladine C. Two Distinct Modes of Protein-Induced Bending in DNA. J. Mol. Biol. 1998;282:331–343. doi: 10.1006/jmbi.1998.1994. PubMed DOI

Kabsch W., Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...