Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32499537
PubMed Central
PMC7272655
DOI
10.1038/s41467-020-16485-1
PII: 10.1038/s41467-020-16485-1
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- chov zvířat metody MeSH
- chov MeSH
- destičkový růstový faktor metabolismus MeSH
- divoká zvířata genetika MeSH
- druhová specificita MeSH
- fenotyp MeSH
- frekvence genu MeSH
- genetická variace MeSH
- genetika MeSH
- genomika MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- mutace MeSH
- ovce domácí genetika MeSH
- ovce MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) MeSH
- vazebná nerovnováha MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- destičkový růstový faktor MeSH
Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals.
College of Animal Science and Technology China Agricultural University Beijing 100193 China
College of Animal Science and Technology Sichuan Agricultural University Chengdu 611130 China
CSIRO Livestock Industries St Lucia Brisbane QLD Australia
Department of Animal Science Faculty of Agriculture Shahid Bahonar University of Kerman Kerman Iran
Department of Biological Sciences University of Alberta Edmonton Alberta T6G 2E9 Canada
Department of Microbial Cellular and Molecular Biology Addis Ababa University Addis Ababa Ethiopia
Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
Institute of Animal Breeding and Genetics Justus Liebig University Giessen Germany
Institute of Molecular Genetics of the ASCR v v i Vídeňská 1083 142 20 Prague 4 Czech Republic
Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing 210095 China
LiveGene Program International Livestock Research Institute Addis Ababa Ethiopia
Livestock Genetics Program International Livestock Research Institute Nairobi Kenya
Novogene Bioinformatics Institute Beijing 100083 China
Production Systems Natural Resources Institute Finland FI 31600 Jokioinen Finland
School of Biosciences Cardiff University Cathays Park Cardiff CF10 3AX Wales UK
School of Life Sciences University of Nottingham University Park Nottingham NG7 2RD UK
Shandong Binzhou Academy of Animal Science and Veterinary Medicine Binzhou 256600 China
Sustainable Places Research Institute Cardiff University CF10 3BA Cardiff Wales UK
University of Chinese Academy of Sciences Beijing 100049 China
Zobrazit více v PubMed
Alberto FJ, et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018;9:813. PubMed PMC
Naval-Sanchez M, et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 2018;9:859. PubMed PMC
Xu SS, Li MH. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front. Agr. Sci. Eng. 2017;4:279–288.
Meyer RS, et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat. Genet. 2016;48:1083–1088. PubMed
Zhou Z, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015;33:408–414. PubMed
Daetwyler HD, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 2014;46:858–865. PubMed
Jiang Y, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 2014;344:1168–1173. PubMed PMC
Varshney RK, et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat. Genet. 2017;49:1082–1088. PubMed
Kijas JW, et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012;10:e1001258. PubMed PMC
Ryder ML. A survey of European primitive breeds of sheep. Ann. Genet. Sel. Anim. 1981;13:418. PubMed PMC
Du, L. X. Animal Genetic Resources in China (China Agriculture Press, Beijing, 2011).
Muigai AWT, Hanotte O. The origin of African sheep: archaeological and genetic perspectives. Afr. Archaeol. Rev. 2013;30:39–50. PubMed PMC
Porter, V., Alderson, L., Hall, S.J.G. & Sponenberg, D.P. Mason’s Wold Encyclopedia of Livestock Breeds and Breeding: 2 volume pack (CAB International, Wallingford, 2016).
Hu ZL, Park CA, Reecy JM. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019;47:D701–D710. PubMed PMC
Dickinson RE, et al. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. Reproduction. 2010;139:395–407. PubMed PMC
Szewczuk M. Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/Rsal) with milk production traits of four cattle breeds. J. Dairy Res. 2015;82:287–292. PubMed
Wang Z, et al. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PLoS ONE. 2014;9:e107101. PubMed PMC
Cristancho AG, et al. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proc. Natl Acad. Sci. USA. 2011;108:16271–16276. PubMed PMC
Niu Y, et al. Biallelic β-carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9. Anim. Genet. 2017;48:242–244. PubMed
Ilardo MA, et al. Physiological and genetic adaptations to diving in Sea Nomads. Cell. 2018;173:569–580. PubMed
Lv FH, et al. Adaptations to climate-mediated selective pressures in sheep. Mol. Biol. Evol. 2014;31:3324–3343. PubMed PMC
Yang J, et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 2016;33:2576–2592. PubMed PMC
Gao C, et al. Genome-wide study of subcutaneous and visceral adipose tissue reveals novel sex-specific adiposity loci in Mexican Americans. Obesity. 2018;26:202–212. PubMed PMC
Taye M, et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm. Genome. 2017;28:528–541. PubMed
Redon R, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–454. PubMed PMC
Xu SS, et al. Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018;9:118. PubMed PMC
Onteru SK, et al. A whole-genome association study for pig reproductive traits. Anim. Genet. 2012;43:18–26. PubMed
Lai FN, et al. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus) Sci. Rep. 2016;6:38096. PubMed PMC
Johnston SE, et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 2011;20:2555–2566. PubMed
Peng WF, et al. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries) Anim. Genet. 2017;48:570–579. PubMed
Chandramouli A, Hatsell SJ, Pinderhughes A, Koetz L, Cowin P. Gli activity is critical at multiple stages of embryonic mammary and nipple development. PLoS ONE. 2013;8:e79845. PubMed PMC
Harburg G, et al. SLIT/ROBO2 signaling promotes mammary stem cell senescence by inhibiting Wnt signaling. Stem Cell Rep. 2014;3:385–393. PubMed PMC
Rubin CJ, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587–591. PubMed
Larson G, Bradley DG. How much is that in dog years? The advent of canine population genomics. PLoS Genet. 2014;10:e1004093. PubMed PMC
Qiu Q, et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat. Commun. 2015;6:10283. PubMed PMC
Carneiro M, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014;345:1074–1079. PubMed PMC
Medugorac I, et al. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat. Genet. 2017;49:470–475. PubMed
Sahlan M, Zako T, Yohda M. Prefoldin, a jellyfish-like molecular chaperone: functional cooperation with a group II chaperonin and beyond. Biophys. Rev. 2018;10:339–345. PubMed PMC
Schubert C. The genomic basis of the Williams-Beuren syndrome. Cell Mol. Life Sci. 2009;66:1178–1197. PubMed PMC
Trut L, Oskina I, Kharlamova A. Animal evolution during domestication: the domesticated fox as a model. Bioessays. 2009;31:349–360. PubMed PMC
vonHoldt BM, et al. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. Sci. Adv. 2017;3:e1700398. PubMed PMC
Guerrini M, et al. Molecular DNA identity of the mouflon of Cyprus (Ovis orientalis ophion, Bovidae): Near Eastern origin and divergence from Western Mediterranean conspecific populations. Syst. Biodivers. 2015;13:472–483.
LaRochelle WJ, et al. PDGF-D, a new protease-activated growth factor. Nat. Cell Biol. 2001;3:517–521. PubMed
Dani C, Pfeifer A. The complexity of PDGFR signaling: regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investig. 2017;4:28. PubMed PMC
Olson LE, Soriano P. PDGFRβ signaling regulates mural cell plasticity and inhibits fat development. Dev. Cell. 2011;20:815–826. PubMed PMC
Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb. Perspect. Biol. 2012;4:a008417. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. PubMed PMC
Cheng AY, Teo YY, Ong RT. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals. Bioinformatics. 2014;30:1707–1713. PubMed
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. PubMed PMC
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–984. PubMed PMC
Rausch T, et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–i339. PubMed PMC
Chen X, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–1222. PubMed
Jeffares DC, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017;8:14061. PubMed PMC
Vilella AJ, et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2009;19:327–335. PubMed PMC
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. PubMed PMC
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. PubMed PMC
Purcell S, et al. PLINK: a tool set for whole genome whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC
Reynolds J, Weir BS, Cockerham CC. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics. 1983;105:767–779. PubMed PMC
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. PubMed
Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166.
Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968;38:226–231. PubMed
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–496. PubMed PMC
Zhao YX, et al. Genomic reconstruction of the history of native Sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol. Biol. Evol. 2017;34:2380–2395. PubMed PMC
Barbato M, Orozco-terWengel P, Tapio M, Bruford MW. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 2015;6:109. PubMed PMC
Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010;20:393–402. PubMed PMC
Szpiech ZA, Hernandez RD. Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 2014;31:2824–2827. PubMed PMC
Crawford NG, et al. Loci associated with skin pigmentation identified in African populations. Science. 2017;358:eaan8433. PubMed PMC
Pagani L, et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature. 2016;538:238–242. PubMed PMC
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. PubMed PMC
Bradbury PJ, et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. PubMed
Goeman JJ, Solari A. Multiple hypothesis testing in genomics. Stat. Med. 2014;33:1946–1978. PubMed
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, String Tie and Ballgown. Nat. Protoc. 2016;11:1650–1667. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–408. PubMed
Natural Earth Home Page, https://www.naturalearthdata.com (2020).