Development of a Sustained Release Nano-In-Gel Delivery System for the Chemotactic and Angiogenic Growth Factor Stromal-Derived Factor 1α

. 2020 Jun 04 ; 12 (6) : . [epub] 20200604

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32512712

Grantová podpora
13/IA/1840 Science Foundation Ireland - Ireland
604531 Seventh Framework Programme
13/RC/2073 European Regional Development Fund

Odkazy

PubMed 32512712
PubMed Central PMC7355599
DOI 10.3390/pharmaceutics12060513
PII: pharmaceutics12060513
Knihovny.cz E-zdroje

Stromal-Derived Factor 1α (SDF) is an angiogenic, chemotactic protein with significant potential for applications in a range of clinical areas, including wound healing, myocardial infarction and orthopaedic regenerative approaches. The 26-min in vivo half-life of SDF, however, has limited its clinical translation to date. In this study, we investigate the use of star-shaped or linear poly(glutamic acid) (PGA) polypeptides to produce PGA-SDF nanoparticles, which can be incorporated into a tyramine-modified hyaluronic acid hydrogel (HA-TA) to facilitate sustained localised delivery of SDF. The physicochemical properties and biocompatibility of the PGA-SDF nanoparticle formulations were extensively characterised prior to incorporation into a HA-TA hydrogel. The biological activity of the SDF released from the nano-in-gel system was determined on Matrigel®, scratch and Transwell® migration assays. Both star-shaped and linear PGA facilitated SDF nanoparticle formation with particle sizes from 255-305 nm and almost complete SDF complexation. Star-PGA-SDF demonstrated superior biocompatibility and was incorporated into a HA-TA gel, which facilitated sustained SDF release for up to 35 days in vitro. Released SDF significantly improved gap closure on a scratch assay, produced a 2.8-fold increase in HUVEC Transwell® migration and a 1.5-fold increase in total tubule length on a Matrigel® assay at 12 h compared to untreated cells. Overall, we present a novel platform system for the sustained delivery of bioactive SDF from a nano-in-gel system which could be adapted for a range of biomedical applications.

Zobrazit více v PubMed

Holmes W.D., Consler T.G., Dallas W.S., Rocque W.J., Willard D.H. Solution Studies of Recombinant Human Stromal-Cell-Derived Factor-1. Protein Expr. Purif. 2001;21:367–377. doi: 10.1006/prep.2001.1402. PubMed DOI

Walentowicz-Sadlecka M., Sadlecki P., Bodnar M., Marszalek A., Walentowicz P., Sokup A., Wilińska-Jankowska A., Grabiec M. Stromal Derived Factor-1 (SDF-1) and Its Receptors CXCR4 and CXCR7 in Endometrial Cancer Patients. PLoS ONE. 2014;9:e84629. doi: 10.1371/journal.pone.0084629. PubMed DOI PMC

Ho T.K., Shiwen X., Abraham D., Tsui J., Baker D. Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia. [(accessed on 9 June 2019)];Cardiol. Res. Pract. 2012 2012:143209. doi: 10.1155/2012/143209. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22462026. PubMed DOI PMC

Liu X., Duan B., Cheng Z., Jia X., Mao L., Fu H., Che Y., Ou L., Liu L., Kong D. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2011;2:845–854. doi: 10.1007/s13238-011-1097-z. PubMed DOI PMC

Song M., Jang H., Lee J., Kim J.H., Kim S.H., Sun K., Park Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials. 2014;35:2436–2445. doi: 10.1016/j.biomaterials.2013.12.011. PubMed DOI

Theiss H.D., Vallaster M., Rischpler C., Krieg L., Zaruba M.M., Brunner S., Vanchev Y., Fischer R., Gröbner M., Wollenweber T., et al. Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. [(accessed on 9 June 2019)];Stem. Cell. Res. 2011 7:244–255. doi: 10.1016/j.scr.2011.05.003. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1873506111000626. PubMed DOI

Zhang M., Mal N., Kiedrowski M., Chacko M., Askari A.T., Popović Z.B., Koc O.N., Penn M.S. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21:3197–3207. doi: 10.1096/fj.06-6558com. PubMed DOI

Jang Y.-H., Kim J.-H., Ban C., Ahn K., Cheong J.-H., Kim H.-H., Kim J.-S., Park Y.-H., Kim J., Chun K.-J., et al. Stromal Cell Derived Factor-1 (SDF-1) Targeting Reperfusion Reduces Myocardial Infarction in Isolated Rat Hearts. Cardiovasc. Ther. 2011;30:264–272. doi: 10.1111/j.1755-5922.2011.00301.x. PubMed DOI

Zhang M., Qiu L., Zhang Y., Xu D., Zheng J., Jiang L. CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Sci. Rep. 2017;7:8289. doi: 10.1038/s41598-017-08840-y. PubMed DOI PMC

Shah A., Mann D.L. In search of new therapeutic targets and strategies for heart failure: Recent advances in basic science. Lancet. 2011;378:704–712. doi: 10.1016/S0140-6736(11)60894-5. PubMed DOI PMC

Cochain C., Channon K.M., Silvestre J.-S. Angiogenesis in the Infarcted Myocardium. Antioxid. Redox Signal. 2013;18:1100–1113. doi: 10.1089/ars.2012.4849. PubMed DOI PMC

Wang G.-Y., Jiang H., Yu Y., He F., Liu Y.-Y., Wang Z.-S., Xiao S.-C., Tang C., Xia Z.-F., Ji S.-Z., et al. A new method of wound treatment: Targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α. Int. J. Nanomed. 2015;10:6571–6585. doi: 10.2147/IJN.S88384. PubMed DOI PMC

Snell R.J. Therapeutic Angiogenesis in the Management of Critical Limb Ischemia American College of Cardiology [Internet] [(accessed on 9 June 2019)];2016 American College of Cardiology. Available online: https://www.acc.org/latest-in-cardiology/articles/2016/05/12/08/27/therapeutic-angiogenesis-in-the-management-of-critical-limb-ischemia.

Zamproni L.N., Mundim M., Porcionatto M., Rieux A.D. Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment. Int. J. Pharm. 2017;519:323–331. doi: 10.1016/j.ijpharm.2017.01.036. PubMed DOI

Dutta D., Fauer C., Mulleneux H.L., Stabenfeldt S.E. Tunable controlled release of bioactive SDF-1α via specific protein interactions within fibrin/nanoparticle composites. J. Mater. Chem. B. 2015;3:7963–7973. doi: 10.1039/C5TB00935A. PubMed DOI PMC

Mi L., Liu H., Gao Y., Miao H., Ruan J. Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration. Int. J. Boil. Macromol. 2017;101:341–347. doi: 10.1016/j.ijbiomac.2017.03.098. PubMed DOI

O’Brien F.J. Biomaterials & scaffolds for tissue engineering. [(accessed on 9 June 2019)];Mater. Today Internet. 2011 14:88–95. Available online: https://www.sciencedirect.com/science/article/pii/S136970211170058X.

Andreas K., Sittinger M., Ringe J. Toward in situ tissue engineering: Chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32:483–492. doi: 10.1016/j.tibtech.2014.06.008. PubMed DOI

Kim J.J., Hou L., Huang N.F. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater. 2016;41:17–26. doi: 10.1016/j.actbio.2016.06.001. PubMed DOI PMC

Auger F.A., Gibot L., Lacroix D. The Pivotal Role of Vascularization in Tissue Engineering. Annu. Rev. Biomed. Eng. 2013;15:177–200. doi: 10.1146/annurev-bioeng-071812-152428. PubMed DOI

Laiva A.L., Raftery R.M., Keogh M., O’Brien F.J. Pro-angiogenic impact of SDF-1α gene-activated collagen-based scaffolds in stem cell driven angiogenesis. Int. J. Pharm. 2018;544:372–379. doi: 10.1016/j.ijpharm.2018.03.032. PubMed DOI

Zwingenberger S., Langanke R., Vater C., Lee G., Niederlohmann E., Sensenschmidt M., Jacobi A., Bernhardt R., Muders M., Rammelt S., et al. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. J. Biomed. Mater. Res. Part A. 2016;104:2126–2134. doi: 10.1002/jbm.a.35744. PubMed DOI

Rajabi S., Jalili-Firoozinezhad S., Ashtiani M.K., Le Carrou G., Tajbakhsh S., Baharvand H. Effect of chemical immobilization of SDF-1α into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. J. Tissue Eng. Regen. Med. 2017;12:e438–e450. doi: 10.1002/term.2479. PubMed DOI

Schantz J.-T., Chim H., Whiteman M. Cell Guidance in Tissue Engineering: SDF-1 Mediates Site-Directed Homing of Mesenchymal Stem Cells within Three-Dimensional Polycaprolactone Scaffolds. Tissue Eng. 2007;13:2615–2624. doi: 10.1089/ten.2006.0438. PubMed DOI

Chen P., Tao J., Zhu S., Cai Y., Mao Q., Yu N., Dai J., Ouyang H. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials. 2015;39:114–123. doi: 10.1016/j.biomaterials.2014.10.049. PubMed DOI

Kirkpatrick B., Nguyen L., Kondrikova G., Herberg S., Hill W.D. Stability of human stromal-derived factor-1alpha (CXCL12alpha) after blood sampling. Ann. Clin. Lab. Sci. 2010;40:257–260. PubMed

Baumann L., Prokoph S., Gabriel C., Freudenberg U., Werner C., Beck-Sickinger A.G. A novel, biased-like SDF-1 derivative acts synergistically with starPEG-based heparin hydrogels and improves eEPC migration in vitro. J. Control. Release. 2012;162:68–75. doi: 10.1016/j.jconrel.2012.04.049. PubMed DOI

Sun J., Zhao Y., Li Q., Chen B., Hou X., Xiao Z., Dai J. Controlled Release of Collagen-Binding SDF-1α Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells. Sci. Rep. 2016;6:26683. doi: 10.1038/srep26683. PubMed DOI PMC

Mitragotri S., Burke P.A., Langer R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014;13:655–672. doi: 10.1038/nrd4363. PubMed DOI PMC

Mansor M.H., Najberg M., Contini A., Alvarez-Lorenzo C., Garcion E., Jérôme C., Boury F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur. J. Pharm. Biopharm. 2018;125:38–50. doi: 10.1016/j.ejpb.2017.12.020. PubMed DOI

Wang B., Tan L., Deng D., Lu T., Zhou C., Li Z., Tang Z., Wu Z., Tang H. Novel stable cytokine delivery system & nbsp; in physiological pH solution: Chitosan oligosaccharide/heparin nanoparticles. [(accessed on 9 June 2019)];Int. J. Nanomed. Internet. 2015 10:3417. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26056441. PubMed PMC

Bader A.R., Li T., Wang W., Kohane D.S., Loscalzo J., Zhang Y.-Y. Preparation and Characterization of SDF-1α-Chitosan-Dextran Sulfate Nanoparticles. [(accessed on 9 June 2019)];J. Vis. Exp. 2015 95:e52323. Available online: http://www.jove.com/video/52323/preparation-characterization-sdf-1-chitosan-dextran-sulfate. PubMed PMC

Zhu G., Mallery S.R., Schwendeman S.P. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide) Nat. Biotechnol. 2000;18:52–57. doi: 10.1038/71916. PubMed DOI

Yan Y., Li J., Zheng J., Pan Y., Wang J., He X., Zhang L., Liu D. Poly(l-lysine)-based star-block copolymers as pH-responsive nanocarriers for anionic drugs. Colloids Surf. B Biointerfaces. 2012;95:137–143. doi: 10.1016/j.colsurfb.2012.02.034. PubMed DOI

Byrne M., Victory D., Hibbitts A., Lanigan M., Heise A., Cryan S.-A. Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater. Sci. 2013;1:1223. doi: 10.1039/c3bm60123d. PubMed DOI

Walsh D.P., Murphy R.D., Panarella A., Raftery R.M., Cavanagh B., Simpson J.C., O’Brien F.J., Heise A., Cryan S.-A. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Mol. Pharm. 2018;15:1878–1891. doi: 10.1021/acs.molpharmaceut.8b00044. PubMed DOI

Yan Y., Wei D., Li J., Zheng J., Shi G., Luo W., Pan Y., Wang J., Zhang L., He X., et al. A poly(l-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release. Acta Biomater. 2012;8:2113–2120. doi: 10.1016/j.actbio.2012.02.016. PubMed DOI

Byrne M., Thornton P., Cryan S.-A., Heise A. Star polypeptides by NCA polymerisation from dendritic initiators: Synthesis and enzyme controlled payload release. Polym. Chem. 2012;3:2825. doi: 10.1039/c2py20327h. DOI

Dalonneau F., Liu X.Q., Sadir R., Almodóvar J., Mertani H.C., Brückert F., Albiges-Rizo C., Weidenhaupt M., Lortat-Jacob H., Picart C. The effect of delivering the chemokine SDF-1α in a matrix-bound manner on myogenesis. Biomaterials. 2014;35:4525–4535. doi: 10.1016/j.biomaterials.2014.02.008. PubMed DOI PMC

Alexis F., Pridgen E., Molnar L.K., Farokhzad O.C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008;5:505–515. doi: 10.1021/mp800051m. PubMed DOI PMC

Vermonden T., Censi R., Hennink W.E. Hydrogels for Protein Delivery. Chem. Rev. 2012;112:2853–2888. doi: 10.1021/cr200157d. PubMed DOI

Holland T.A., Tabata Y., Mikos A.G. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control. Release. 2005;101:111–125. doi: 10.1016/j.jconrel.2004.07.004. PubMed DOI

Lee F., Chung J.E., Kurisawa M. An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J. Control. Release. 2009;134:186–193. doi: 10.1016/j.jconrel.2008.11.028. PubMed DOI

Kim K., Park S., Yang J.-A., Jeon J.-H., Bhang S., Kim B.-S., Hahn S.K. Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater. 2011;7:666–674. doi: 10.1016/j.actbio.2010.09.030. PubMed DOI

Lee F., Chung J.E., Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter. 2008;4:880. doi: 10.1039/b719557e. PubMed DOI

Dolan E.B., Kovarova L., O’Neill H., Pravda M., Sulakova R., Scigalkova I., Velebny V., Daro D., Braun N., Cooney G.M., et al. Advanced Material Catheter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. J. Biomater. Appl. 2018;33:681–692. doi: 10.1177/0885328218805878. PubMed DOI

O’Dwyer J., Murphy R., Dolan E.B., Kovarova L., Pravda M., Velebny V., Heise A., Duffy G.P., Cryan S.-A. Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Deliv. Transl. Res. 2019;10:440–454. doi: 10.1007/s13346-019-00684-5. PubMed DOI

Shen S., Wu Y., Liu Y., Wu D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017;12:4085–4109. doi: 10.2147/IJN.S132780. PubMed DOI PMC

Petit I., Jin D., Rafii S. The SDF-1–CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299–307. doi: 10.1016/j.it.2007.05.007. PubMed DOI PMC

Huang C., Gu H., Zhang W., Manukyan M.C., Shou W., Wang M. SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury. [(accessed on 24 August 2019)];Am. J. Physiol. Heart. Circ. Physiol. 2011 301:H1496–H1505. doi: 10.1152/ajpheart.00365.2011. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21821779. PubMed DOI PMC

European Medicines Agency Guideline on Process Validation for Finished Products Information and Data to be Provided in Regulatory Submissions [Internet] [(accessed on 16 May 2020)];2016 Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-process-validation-finished-products-information-data-be-provided-regulatory-submissions_en.pdf.

Chung E.S., Miller L., Patel A.N., Anderson R.D., Mendelsohn F.O., Traverse J., Silver K.H., Shin J., Ewald G., Farr M.J., et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: The STOP-HF randomized Phase II trial. Eur. Hear. J. 2015;36:2228–2238. doi: 10.1093/eurheartj/ehv254. PubMed DOI PMC

Duro-Castano A., England R.M., Razola D., Sanz E.R., Oteo M., Morcillo M.A., Vicent M.J. Well-Defined Star-Shaped Polyglutamates with Improved Pharmacokinetic Profiles As Excellent Candidates for Biomedical Applications. Mol. Pharm. 2015;12:3639–3649. doi: 10.1021/acs.molpharmaceut.5b00358. PubMed DOI

Anderson W., Kozak D., Coleman V., Jämting Å.K., Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013;405:322–330. doi: 10.1016/j.jcis.2013.02.030. PubMed DOI

Filipe V., Hawe A., Jiskoot W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010;27:796–810. doi: 10.1007/s11095-010-0073-2. PubMed DOI PMC

Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A.V., Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC

Yin T., Bader A.R., Hou T.K., Maron B.A., Kao D.D., Qian R., Kohane D.S., Handy D., Loscalzo J., Zhang Y.-Y. SDF-1α in Glycan Nanoparticles Exhibits Full Activity and Reduces Pulmonary Hypertension in Rats. Biomacromolecules. 2013;14:4009–4020. doi: 10.1021/bm401122q. PubMed DOI PMC

Cross D.P., Wang C. Stromal-derived factor-1 alpha-loaded PLGA microspheres for stem cell recruitment. Pharm. Res. 2011;28:2477–2489. doi: 10.1007/s11095-011-0474-x. PubMed DOI PMC

He X., Ma J., Jabbari E. Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. Int. J. Pharm. 2010;390:107–116. doi: 10.1016/j.ijpharm.2009.12.063. PubMed DOI PMC

Rabbany S.Y., Pastore J., Yamamoto M., Miller T., Rafii S., Aras R., Penn M. Continuous Delivery of Stromal Cell-Derived Factor-1 from Alginate Scaffolds Accelerates Wound Healing. Cell Transplant. 2010;19:399–408. doi: 10.3727/096368909X481782. PubMed DOI

Zhu Y., Hoshi R., Chen S., Yi J., Duan C., Galiano R.D., Zhang H.F., Ameer G.A. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J. Control. Release. 2016;238:114–122. doi: 10.1016/j.jconrel.2016.07.043. PubMed DOI

Fu K., Klibanov A., Langer R. Protein stability in controlled-release systems. Nat. Biotechnol. 2000;18:24–25. doi: 10.1038/71875. PubMed DOI

Unoki N., Murakami T., Nishijima K., Ogino K., van Rooijen N., Yoshimura N. SDF-1/CXCR4 Contributes to the Activation of Tip Cells and Microglia in Retinal Angiogenesis. [(accessed on 9 June 2019)];Investig. Opthalmology Vis. Sci. 2010 51:3362. doi: 10.1167/iovs.09-4978. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20181837. PubMed DOI

Latifi-Pupovci H., Kuçi Z., Wehner S., Bönig H., Lieberz R., Klingebiel T., Bader P., Kuçi S. In vitro migration and proliferation (“wound healing”) potential of mesenchymal stromal cells generated from human CD271(+) bone marrow mononuclear cells. [(accessed on 27 July 2019)];J. Transl. Med. 2015 13:315. doi: 10.1186/s12967-015-0676-9. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26407865. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Translational Studies on the Potential of a VEGF Nanoparticle-Loaded Hyaluronic Acid Hydrogel

. 2021 May 22 ; 13 (6) : . [epub] 20210522

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...