Development of a Sustained Release Nano-In-Gel Delivery System for the Chemotactic and Angiogenic Growth Factor Stromal-Derived Factor 1α
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
13/IA/1840
Science Foundation Ireland - Ireland
604531
Seventh Framework Programme
13/RC/2073
European Regional Development Fund
PubMed
32512712
PubMed Central
PMC7355599
DOI
10.3390/pharmaceutics12060513
PII: pharmaceutics12060513
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, chemotaxis, hydrogel, nanoparticle, protein delivery, stromal-derived factor, sustained release,
- Publikační typ
- časopisecké články MeSH
Stromal-Derived Factor 1α (SDF) is an angiogenic, chemotactic protein with significant potential for applications in a range of clinical areas, including wound healing, myocardial infarction and orthopaedic regenerative approaches. The 26-min in vivo half-life of SDF, however, has limited its clinical translation to date. In this study, we investigate the use of star-shaped or linear poly(glutamic acid) (PGA) polypeptides to produce PGA-SDF nanoparticles, which can be incorporated into a tyramine-modified hyaluronic acid hydrogel (HA-TA) to facilitate sustained localised delivery of SDF. The physicochemical properties and biocompatibility of the PGA-SDF nanoparticle formulations were extensively characterised prior to incorporation into a HA-TA hydrogel. The biological activity of the SDF released from the nano-in-gel system was determined on Matrigel®, scratch and Transwell® migration assays. Both star-shaped and linear PGA facilitated SDF nanoparticle formation with particle sizes from 255-305 nm and almost complete SDF complexation. Star-PGA-SDF demonstrated superior biocompatibility and was incorporated into a HA-TA gel, which facilitated sustained SDF release for up to 35 days in vitro. Released SDF significantly improved gap closure on a scratch assay, produced a 2.8-fold increase in HUVEC Transwell® migration and a 1.5-fold increase in total tubule length on a Matrigel® assay at 12 h compared to untreated cells. Overall, we present a novel platform system for the sustained delivery of bioactive SDF from a nano-in-gel system which could be adapted for a range of biomedical applications.
Department of Chemistry Royal College of Surgeons in Ireland Dublin 2 Ireland
R and D Department Contipro Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
SFI Research Centre for Medical Devices Galway and Dublin Ireland
The SFI Centre for Advanced Materials and Bioengineering Research ; Dublin 2 Ireland
Trinity Centre for Biomedical Engineering Trinity College Dublin Dublin 2 Ireland
Zobrazit více v PubMed
Holmes W.D., Consler T.G., Dallas W.S., Rocque W.J., Willard D.H. Solution Studies of Recombinant Human Stromal-Cell-Derived Factor-1. Protein Expr. Purif. 2001;21:367–377. doi: 10.1006/prep.2001.1402. PubMed DOI
Walentowicz-Sadlecka M., Sadlecki P., Bodnar M., Marszalek A., Walentowicz P., Sokup A., Wilińska-Jankowska A., Grabiec M. Stromal Derived Factor-1 (SDF-1) and Its Receptors CXCR4 and CXCR7 in Endometrial Cancer Patients. PLoS ONE. 2014;9:e84629. doi: 10.1371/journal.pone.0084629. PubMed DOI PMC
Ho T.K., Shiwen X., Abraham D., Tsui J., Baker D. Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia. [(accessed on 9 June 2019)];Cardiol. Res. Pract. 2012 2012:143209. doi: 10.1155/2012/143209. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22462026. PubMed DOI PMC
Liu X., Duan B., Cheng Z., Jia X., Mao L., Fu H., Che Y., Ou L., Liu L., Kong D. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2011;2:845–854. doi: 10.1007/s13238-011-1097-z. PubMed DOI PMC
Song M., Jang H., Lee J., Kim J.H., Kim S.H., Sun K., Park Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials. 2014;35:2436–2445. doi: 10.1016/j.biomaterials.2013.12.011. PubMed DOI
Theiss H.D., Vallaster M., Rischpler C., Krieg L., Zaruba M.M., Brunner S., Vanchev Y., Fischer R., Gröbner M., Wollenweber T., et al. Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. [(accessed on 9 June 2019)];Stem. Cell. Res. 2011 7:244–255. doi: 10.1016/j.scr.2011.05.003. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1873506111000626. PubMed DOI
Zhang M., Mal N., Kiedrowski M., Chacko M., Askari A.T., Popović Z.B., Koc O.N., Penn M.S. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21:3197–3207. doi: 10.1096/fj.06-6558com. PubMed DOI
Jang Y.-H., Kim J.-H., Ban C., Ahn K., Cheong J.-H., Kim H.-H., Kim J.-S., Park Y.-H., Kim J., Chun K.-J., et al. Stromal Cell Derived Factor-1 (SDF-1) Targeting Reperfusion Reduces Myocardial Infarction in Isolated Rat Hearts. Cardiovasc. Ther. 2011;30:264–272. doi: 10.1111/j.1755-5922.2011.00301.x. PubMed DOI
Zhang M., Qiu L., Zhang Y., Xu D., Zheng J., Jiang L. CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Sci. Rep. 2017;7:8289. doi: 10.1038/s41598-017-08840-y. PubMed DOI PMC
Shah A., Mann D.L. In search of new therapeutic targets and strategies for heart failure: Recent advances in basic science. Lancet. 2011;378:704–712. doi: 10.1016/S0140-6736(11)60894-5. PubMed DOI PMC
Cochain C., Channon K.M., Silvestre J.-S. Angiogenesis in the Infarcted Myocardium. Antioxid. Redox Signal. 2013;18:1100–1113. doi: 10.1089/ars.2012.4849. PubMed DOI PMC
Wang G.-Y., Jiang H., Yu Y., He F., Liu Y.-Y., Wang Z.-S., Xiao S.-C., Tang C., Xia Z.-F., Ji S.-Z., et al. A new method of wound treatment: Targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α. Int. J. Nanomed. 2015;10:6571–6585. doi: 10.2147/IJN.S88384. PubMed DOI PMC
Snell R.J. Therapeutic Angiogenesis in the Management of Critical Limb Ischemia American College of Cardiology [Internet] [(accessed on 9 June 2019)];2016 American College of Cardiology. Available online: https://www.acc.org/latest-in-cardiology/articles/2016/05/12/08/27/therapeutic-angiogenesis-in-the-management-of-critical-limb-ischemia.
Zamproni L.N., Mundim M., Porcionatto M., Rieux A.D. Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment. Int. J. Pharm. 2017;519:323–331. doi: 10.1016/j.ijpharm.2017.01.036. PubMed DOI
Dutta D., Fauer C., Mulleneux H.L., Stabenfeldt S.E. Tunable controlled release of bioactive SDF-1α via specific protein interactions within fibrin/nanoparticle composites. J. Mater. Chem. B. 2015;3:7963–7973. doi: 10.1039/C5TB00935A. PubMed DOI PMC
Mi L., Liu H., Gao Y., Miao H., Ruan J. Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration. Int. J. Boil. Macromol. 2017;101:341–347. doi: 10.1016/j.ijbiomac.2017.03.098. PubMed DOI
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. [(accessed on 9 June 2019)];Mater. Today Internet. 2011 14:88–95. Available online: https://www.sciencedirect.com/science/article/pii/S136970211170058X.
Andreas K., Sittinger M., Ringe J. Toward in situ tissue engineering: Chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32:483–492. doi: 10.1016/j.tibtech.2014.06.008. PubMed DOI
Kim J.J., Hou L., Huang N.F. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater. 2016;41:17–26. doi: 10.1016/j.actbio.2016.06.001. PubMed DOI PMC
Auger F.A., Gibot L., Lacroix D. The Pivotal Role of Vascularization in Tissue Engineering. Annu. Rev. Biomed. Eng. 2013;15:177–200. doi: 10.1146/annurev-bioeng-071812-152428. PubMed DOI
Laiva A.L., Raftery R.M., Keogh M., O’Brien F.J. Pro-angiogenic impact of SDF-1α gene-activated collagen-based scaffolds in stem cell driven angiogenesis. Int. J. Pharm. 2018;544:372–379. doi: 10.1016/j.ijpharm.2018.03.032. PubMed DOI
Zwingenberger S., Langanke R., Vater C., Lee G., Niederlohmann E., Sensenschmidt M., Jacobi A., Bernhardt R., Muders M., Rammelt S., et al. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. J. Biomed. Mater. Res. Part A. 2016;104:2126–2134. doi: 10.1002/jbm.a.35744. PubMed DOI
Rajabi S., Jalili-Firoozinezhad S., Ashtiani M.K., Le Carrou G., Tajbakhsh S., Baharvand H. Effect of chemical immobilization of SDF-1α into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. J. Tissue Eng. Regen. Med. 2017;12:e438–e450. doi: 10.1002/term.2479. PubMed DOI
Schantz J.-T., Chim H., Whiteman M. Cell Guidance in Tissue Engineering: SDF-1 Mediates Site-Directed Homing of Mesenchymal Stem Cells within Three-Dimensional Polycaprolactone Scaffolds. Tissue Eng. 2007;13:2615–2624. doi: 10.1089/ten.2006.0438. PubMed DOI
Chen P., Tao J., Zhu S., Cai Y., Mao Q., Yu N., Dai J., Ouyang H. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials. 2015;39:114–123. doi: 10.1016/j.biomaterials.2014.10.049. PubMed DOI
Kirkpatrick B., Nguyen L., Kondrikova G., Herberg S., Hill W.D. Stability of human stromal-derived factor-1alpha (CXCL12alpha) after blood sampling. Ann. Clin. Lab. Sci. 2010;40:257–260. PubMed
Baumann L., Prokoph S., Gabriel C., Freudenberg U., Werner C., Beck-Sickinger A.G. A novel, biased-like SDF-1 derivative acts synergistically with starPEG-based heparin hydrogels and improves eEPC migration in vitro. J. Control. Release. 2012;162:68–75. doi: 10.1016/j.jconrel.2012.04.049. PubMed DOI
Sun J., Zhao Y., Li Q., Chen B., Hou X., Xiao Z., Dai J. Controlled Release of Collagen-Binding SDF-1α Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells. Sci. Rep. 2016;6:26683. doi: 10.1038/srep26683. PubMed DOI PMC
Mitragotri S., Burke P.A., Langer R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014;13:655–672. doi: 10.1038/nrd4363. PubMed DOI PMC
Mansor M.H., Najberg M., Contini A., Alvarez-Lorenzo C., Garcion E., Jérôme C., Boury F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur. J. Pharm. Biopharm. 2018;125:38–50. doi: 10.1016/j.ejpb.2017.12.020. PubMed DOI
Wang B., Tan L., Deng D., Lu T., Zhou C., Li Z., Tang Z., Wu Z., Tang H. Novel stable cytokine delivery system & nbsp; in physiological pH solution: Chitosan oligosaccharide/heparin nanoparticles. [(accessed on 9 June 2019)];Int. J. Nanomed. Internet. 2015 10:3417. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26056441. PubMed PMC
Bader A.R., Li T., Wang W., Kohane D.S., Loscalzo J., Zhang Y.-Y. Preparation and Characterization of SDF-1α-Chitosan-Dextran Sulfate Nanoparticles. [(accessed on 9 June 2019)];J. Vis. Exp. 2015 95:e52323. Available online: http://www.jove.com/video/52323/preparation-characterization-sdf-1-chitosan-dextran-sulfate. PubMed PMC
Zhu G., Mallery S.R., Schwendeman S.P. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide) Nat. Biotechnol. 2000;18:52–57. doi: 10.1038/71916. PubMed DOI
Yan Y., Li J., Zheng J., Pan Y., Wang J., He X., Zhang L., Liu D. Poly(l-lysine)-based star-block copolymers as pH-responsive nanocarriers for anionic drugs. Colloids Surf. B Biointerfaces. 2012;95:137–143. doi: 10.1016/j.colsurfb.2012.02.034. PubMed DOI
Byrne M., Victory D., Hibbitts A., Lanigan M., Heise A., Cryan S.-A. Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater. Sci. 2013;1:1223. doi: 10.1039/c3bm60123d. PubMed DOI
Walsh D.P., Murphy R.D., Panarella A., Raftery R.M., Cavanagh B., Simpson J.C., O’Brien F.J., Heise A., Cryan S.-A. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Mol. Pharm. 2018;15:1878–1891. doi: 10.1021/acs.molpharmaceut.8b00044. PubMed DOI
Yan Y., Wei D., Li J., Zheng J., Shi G., Luo W., Pan Y., Wang J., Zhang L., He X., et al. A poly(l-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release. Acta Biomater. 2012;8:2113–2120. doi: 10.1016/j.actbio.2012.02.016. PubMed DOI
Byrne M., Thornton P., Cryan S.-A., Heise A. Star polypeptides by NCA polymerisation from dendritic initiators: Synthesis and enzyme controlled payload release. Polym. Chem. 2012;3:2825. doi: 10.1039/c2py20327h. DOI
Dalonneau F., Liu X.Q., Sadir R., Almodóvar J., Mertani H.C., Brückert F., Albiges-Rizo C., Weidenhaupt M., Lortat-Jacob H., Picart C. The effect of delivering the chemokine SDF-1α in a matrix-bound manner on myogenesis. Biomaterials. 2014;35:4525–4535. doi: 10.1016/j.biomaterials.2014.02.008. PubMed DOI PMC
Alexis F., Pridgen E., Molnar L.K., Farokhzad O.C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008;5:505–515. doi: 10.1021/mp800051m. PubMed DOI PMC
Vermonden T., Censi R., Hennink W.E. Hydrogels for Protein Delivery. Chem. Rev. 2012;112:2853–2888. doi: 10.1021/cr200157d. PubMed DOI
Holland T.A., Tabata Y., Mikos A.G. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control. Release. 2005;101:111–125. doi: 10.1016/j.jconrel.2004.07.004. PubMed DOI
Lee F., Chung J.E., Kurisawa M. An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J. Control. Release. 2009;134:186–193. doi: 10.1016/j.jconrel.2008.11.028. PubMed DOI
Kim K., Park S., Yang J.-A., Jeon J.-H., Bhang S., Kim B.-S., Hahn S.K. Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater. 2011;7:666–674. doi: 10.1016/j.actbio.2010.09.030. PubMed DOI
Lee F., Chung J.E., Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter. 2008;4:880. doi: 10.1039/b719557e. PubMed DOI
Dolan E.B., Kovarova L., O’Neill H., Pravda M., Sulakova R., Scigalkova I., Velebny V., Daro D., Braun N., Cooney G.M., et al. Advanced Material Catheter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. J. Biomater. Appl. 2018;33:681–692. doi: 10.1177/0885328218805878. PubMed DOI
O’Dwyer J., Murphy R., Dolan E.B., Kovarova L., Pravda M., Velebny V., Heise A., Duffy G.P., Cryan S.-A. Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Deliv. Transl. Res. 2019;10:440–454. doi: 10.1007/s13346-019-00684-5. PubMed DOI
Shen S., Wu Y., Liu Y., Wu D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017;12:4085–4109. doi: 10.2147/IJN.S132780. PubMed DOI PMC
Petit I., Jin D., Rafii S. The SDF-1–CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299–307. doi: 10.1016/j.it.2007.05.007. PubMed DOI PMC
Huang C., Gu H., Zhang W., Manukyan M.C., Shou W., Wang M. SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury. [(accessed on 24 August 2019)];Am. J. Physiol. Heart. Circ. Physiol. 2011 301:H1496–H1505. doi: 10.1152/ajpheart.00365.2011. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21821779. PubMed DOI PMC
European Medicines Agency Guideline on Process Validation for Finished Products Information and Data to be Provided in Regulatory Submissions [Internet] [(accessed on 16 May 2020)];2016 Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-process-validation-finished-products-information-data-be-provided-regulatory-submissions_en.pdf.
Chung E.S., Miller L., Patel A.N., Anderson R.D., Mendelsohn F.O., Traverse J., Silver K.H., Shin J., Ewald G., Farr M.J., et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: The STOP-HF randomized Phase II trial. Eur. Hear. J. 2015;36:2228–2238. doi: 10.1093/eurheartj/ehv254. PubMed DOI PMC
Duro-Castano A., England R.M., Razola D., Sanz E.R., Oteo M., Morcillo M.A., Vicent M.J. Well-Defined Star-Shaped Polyglutamates with Improved Pharmacokinetic Profiles As Excellent Candidates for Biomedical Applications. Mol. Pharm. 2015;12:3639–3649. doi: 10.1021/acs.molpharmaceut.5b00358. PubMed DOI
Anderson W., Kozak D., Coleman V., Jämting Å.K., Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013;405:322–330. doi: 10.1016/j.jcis.2013.02.030. PubMed DOI
Filipe V., Hawe A., Jiskoot W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010;27:796–810. doi: 10.1007/s11095-010-0073-2. PubMed DOI PMC
Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A.V., Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC
Yin T., Bader A.R., Hou T.K., Maron B.A., Kao D.D., Qian R., Kohane D.S., Handy D., Loscalzo J., Zhang Y.-Y. SDF-1α in Glycan Nanoparticles Exhibits Full Activity and Reduces Pulmonary Hypertension in Rats. Biomacromolecules. 2013;14:4009–4020. doi: 10.1021/bm401122q. PubMed DOI PMC
Cross D.P., Wang C. Stromal-derived factor-1 alpha-loaded PLGA microspheres for stem cell recruitment. Pharm. Res. 2011;28:2477–2489. doi: 10.1007/s11095-011-0474-x. PubMed DOI PMC
He X., Ma J., Jabbari E. Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. Int. J. Pharm. 2010;390:107–116. doi: 10.1016/j.ijpharm.2009.12.063. PubMed DOI PMC
Rabbany S.Y., Pastore J., Yamamoto M., Miller T., Rafii S., Aras R., Penn M. Continuous Delivery of Stromal Cell-Derived Factor-1 from Alginate Scaffolds Accelerates Wound Healing. Cell Transplant. 2010;19:399–408. doi: 10.3727/096368909X481782. PubMed DOI
Zhu Y., Hoshi R., Chen S., Yi J., Duan C., Galiano R.D., Zhang H.F., Ameer G.A. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J. Control. Release. 2016;238:114–122. doi: 10.1016/j.jconrel.2016.07.043. PubMed DOI
Fu K., Klibanov A., Langer R. Protein stability in controlled-release systems. Nat. Biotechnol. 2000;18:24–25. doi: 10.1038/71875. PubMed DOI
Unoki N., Murakami T., Nishijima K., Ogino K., van Rooijen N., Yoshimura N. SDF-1/CXCR4 Contributes to the Activation of Tip Cells and Microglia in Retinal Angiogenesis. [(accessed on 9 June 2019)];Investig. Opthalmology Vis. Sci. 2010 51:3362. doi: 10.1167/iovs.09-4978. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20181837. PubMed DOI
Latifi-Pupovci H., Kuçi Z., Wehner S., Bönig H., Lieberz R., Klingebiel T., Bader P., Kuçi S. In vitro migration and proliferation (“wound healing”) potential of mesenchymal stromal cells generated from human CD271(+) bone marrow mononuclear cells. [(accessed on 27 July 2019)];J. Transl. Med. 2015 13:315. doi: 10.1186/s12967-015-0676-9. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26407865. PubMed DOI PMC