Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31691161
DOI
10.1007/s13346-019-00684-5
PII: 10.1007/s13346-019-00684-5
Knihovny.cz E-zdroje
- Klíčová slova
- Angiogenesis, Growth factor, Ischaemia, Nanoparticle, Star polypeptide,
- MeSH
- aplikace kožní MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- hydrogely MeSH
- ischemická choroba srdeční farmakoterapie MeSH
- kyselina polyglutamová chemie MeSH
- léky s prodlouženým účinkem MeSH
- lidé MeSH
- nanočástice MeSH
- statická elektřina MeSH
- vaskulární endoteliální růstový faktor A chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogely MeSH
- kyselina polyglutamová MeSH
- léky s prodlouženým účinkem MeSH
- vaskulární endoteliální růstový faktor A MeSH
The 5-year mortality rate for heart failure borders on 50%. The main cause is an ischaemic cardiac event where blood supply to the tissue is lost and cell death occurs. Over time, this damage spreads and the heart is no longer able to pump efficiently. Increasing vascularisation of the affected area has been shown to reduce patient symptoms. The growth factors required to do this have short half-lives making development of an efficacious therapy difficult. Herein, the angiogenic growth factor Vascular Endothelial Growth Factor (VEGF) is complexed electrostatically with star-shaped or linear polyglutamic acid (PGA) polypeptides. Optimised PGA-VEGF nanomedicines provide VEGF encapsulation of > 99% and facilitate sustained release of VEGF for up to 28 days in vitro. The star-PGA-VEGF nanomedicines are loaded into a percutaneous delivery compliant hyaluronic acid hydrogel. Sustained release of VEGF from the composite nano-in-gel system is evident for up to 35 days and the released VEGF has comparable bioactivity to free, fresh VEGF when tested on both Matrigel® and scratch assays. The final star-PGA-VEGF nanomedicine-loaded hydrogel is biocompatible and provides sustained release of bioactive VEGF. Therefore, we report the development of novel, self-assembling PGA-VEGF nanomedicines and their incorporation into a hyaluronic acid hydrogel that is compatible with medical devices to enable minimally invasive delivery to the heart. The final star-PGA-VEGF nanomedicine-loaded hydrogel is biocompatible and provides sustained release of bioactive VEGF. This formulation provides the basis for optimal spatiotemporal delivery of an angiogenic growth factor to the ischaemic myocardium.
AMBER the SFI Centre for Advanced Materials and Bioengineering NUIG RCSI and TCD Dublin Ireland
Anatomy School of Medicine College of Medicine Nursing and Health Sciences NUIG Galway Ireland
Department of Chemistry RCSI Dublin 2 Ireland
R and D Department Contipro Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
Trinity Centre for Biomedical Engineering Trinity College Dublin Dublin 2 Ireland
Zobrazit více v PubMed
J Control Release. 2011 Mar 30;150(3):272-8 PubMed
Biomaterials. 2010 Feb;31(6):1235-41 PubMed
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11380-11391 PubMed
Circulation. 2003 Mar 18;107(10):1359-65 PubMed
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1959-65 PubMed
Int J Nanomedicine. 2017 May 31;12:4085-4109 PubMed
Adv Mater. 2011 Mar 25;23(12):H41-56 PubMed
Acta Biomater. 2012 Jul;8(6):2113-20 PubMed
Cardiovasc Ther. 2013 Jun;31(3):e12-8 PubMed
Adv Drug Deliv Rev. 2003 Feb 24;55(3):329-47 PubMed
Int J Exp Pathol. 2009 Jun;90(3):195-221 PubMed
Biochem Biophys Res Commun. 1989 Jun 15;161(2):851-8 PubMed
Acta Biomater. 2012 Feb;8(2):511-8 PubMed
Pharm Res. 2010 May;27(5):796-810 PubMed
Clin Chem. 2003 Jan;49(1):32-40 PubMed
Iran J Basic Med Sci. 2012 Nov;15(6):1110-26 PubMed
Nat Protoc. 2010 Apr;5(4):628-35 PubMed
Biomacromolecules. 2011 May 9;12(5):1387-408 PubMed
Int J Pharm. 2002 Feb 21;233(1-2):51-9 PubMed
Int J Pharm. 2017 May 25;523(2):454-475 PubMed
Am Heart J. 2001 Nov;142(5):872-80 PubMed
AAPS J. 2012 Jun;14(2):282-95 PubMed
Eur Cell Mater. 2011 Jan 12;21:15-30 PubMed
Expert Opin Drug Deliv. 2011 Mar;8(3):329-42 PubMed
Biomaterials. 2011 Oct;32(30):7432-43 PubMed
Lancet. 2011 Aug 20;378(9792):704-12 PubMed
J Biol Chem. 1996 Jan 12;271(2):603-6 PubMed
Nat Protoc. 2007;2(2):329-33 PubMed
Am J Physiol Heart Circ Physiol. 2018 Feb 1;314(2):H278-H284 PubMed
J Colloid Interface Sci. 2013 Sep 1;405:322-30 PubMed
J Tissue Eng Regen Med. 2017 Apr;11(4):1097-1109 PubMed
Int J Pharm. 2018 Jan 30;536(1):95-107 PubMed
Eur J Heart Fail. 2016 Mar;18(3):314-25 PubMed
Mol Pharm. 2015 Oct 5;12(10):3639-49 PubMed
Head Face Med. 2010 Jul 19;6:17 PubMed
Cardiovasc Pathol. 2016 May-Jun;25(3):214-220 PubMed
Antioxid Redox Signal. 2013 Mar 20;18(9):1100-13 PubMed
J Control Release. 2004 May 18;96(3):463-72 PubMed