Analysis of chromatin structure in mouse preimplantation embryos by fluorescent recovery after photobleaching

. 2016 ; 11 (1) : 85-94. [epub] 20160218

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26901819

Zygotes are totipotent cells that have the ability to differentiate into all cell types. It is believed that this ability is lost gradually and differentiation occurs along with the progression of preimplantation development. Here, we hypothesized that the loose chromatin structure is involved in the totipotency of one-cell stage embryos and that the change from loose to tight chromatin structure is associated with the loss of totipotency. To address this hypothesis, we investigated the mobility of eGFP-tagged histone H2B (eGFP-H2B), which is an index for the looseness of chromatin, during preimplantation development based on fluorescent recovery after photobleaching (FRAP) analysis. The highest mobility of eGFP-H2B was observed in pronuclei in 1-cell stage embryos and mobility gradually decreased during preimplantation development. The decrease in mobility between the 1- and 2-cell stages depended on DNA synthesis in 2-cell stage embryos. In nuclear transferred embryos, chromatin in the pseudopronuclei loosened to a level comparable to the pronuclei in 1-cell stage embryos. These results indicated that the mobility of eGFP-H2B is negatively correlated with the degree of differentiation of preimplantation embryos. Therefore, we suggest that highly loosened chromatin is involved in totipotency of 1-cell embryos and the loss of looseness is associated with differentiation during preimplantation development.

Zobrazit více v PubMed

Mcgraph J, Solter D. inability of mouse blastomere nuclei transerred ot enucleate zygotes to support development in vitro. Science 1984; 226:1317-9; PMID:6542249; http://dx.doi.org/10.1126/science.6542249 PubMed DOI

Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T. H plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 2006; 10:105-16; PMID:16399082; http://dx.doi.org/10.1016/j.devcel.2005.10.017 PubMed DOI PMC

Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 2011; 12:36-47; PMID:21179060; http://dx.doi.org/10.1038/nrm3036 PubMed DOI PMC

Schaniel C, Ang Y-S, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR, Paddison PJ. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in Mouse embryonic stem cells. Stem Cells 2009; 27:2979-91; PMID:19785031 PubMed PMC

Chalut KJ, Höpfler M, Lautenschläger F, Boyde L, Chan CJ, Ekpenyong A, Martinez-Arias A, Guck J. Chromatin decondensation and nuclear softening accompany nanog downregulation in embryonic stem cells. Biophys J 2012; 103:2060-70; PMID:23200040; http://dx.doi.org/10.1016/j.bpj.2012.10.015 PubMed DOI PMC

Martin RM, Cardoso MC. Chromatin condensation modulates access and binding of nuclear proteins. FASEB J 2010; 24:1066-72; PMID:19897663; http://dx.doi.org/10.1096/fj.08-128959 PubMed DOI PMC

Quinn P, Begley AJ. Effect of human seminal plasma and mouse accessory gland extracts on Mouse fertilization in vitro. Aust J Biol Sci 1984; 37:147-52; PMID:6517760 PubMed

Lawitts JA, Biggers JD. Culture of preimplantation embryos. Meth Enzymol 1993; 225:153-64; PMID:8231853; http://dx.doi.org/10.1016/0076-6879(93)25012-Q PubMed DOI

Nashun B, Yukawa M, Liu H, Akiyama T, Aoki F. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 2010; 137:3785-94; PMID:20943707; http://dx.doi.org/10.1242/dev.051805 PubMed DOI

Kishigami S, Wakayama S, Thuan NV, Ohta H, Mizutani E, Hikichi T, Bui H-T, Balbach S, Ogura A, Boiani M, et al.. Production of cloned mice by somatic cell nuclear transfer. Nat Protoc 2006; 1:125-38; PMID:17406224; http://dx.doi.org/10.1038/nprot.2006.21 PubMed DOI

Yukawa M, Akiyama T, Franke V, Mise N, Isagawa T, Suzuki Y, Suzuki MG, Vlahovicek K, Abe K, Aburatani H, et al.. Genome-wide analysis of the chromatin composition of histone H2A and H3 variants in mouse embryonic stem cells. PLoS ONE 2014; 9:e92689; PMID:24658136; http://dx.doi.org/10.1371/journal.pone.0092689 PubMed DOI PMC

Kimura H, Hieda M, Cook PR. Measuring histone and polymerase dynamics in living cells. Meth Enzymol 2004; 375:381-93; PMID:14870679; http://dx.doi.org/10.1016/S0076-6879(03)75024-1 PubMed DOI

Subramanian V, Mazumder A, Surface LE, Butty VL, Fields PA, Alwan A, Torrey L, Thai KK, Levine SS, Bathe M, et al.. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet 2013; 9:e1003725-21; PMID:23990805; http://dx.doi.org/10.1371/journal.pgen.1003725 PubMed DOI PMC

Bae J, Sung BH, Cho IH, Song WK. F-Actin-dependent regulation of NESH dynamics in Rat hippocampal neurons. PLoS One 2012; 7:e34514-12; PMID:22496823; http://dx.doi.org/10.1371/journal.pone.0034514 PubMed DOI PMC

Dieteren CEJ, Willems PHGM, Swarts HG, Fransen J, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Defective mitochondrial translation differently affects the live cell dynamics of complex I subunits. Biochim Biophys Acta 2011; 1807:1624-33; PMID:21978538; http://dx.doi.org/10.1016/j.bbabio.2011.09.013 PubMed DOI

Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010; 329:78-82; PMID:20595612; http://dx.doi.org/10.1126/science.1187945 PubMed DOI PMC

Biggiogera M, Martin TE, Gordon J, Amalric F, Fakan S. Physiologically inactive nucleoli contain nucleoplasmic ribonucleoproteins: immunoelectron microscopy of mouse spermatids and early embryos. Exp Cell Res 1994; 213:55-63; PMID:8020606; http://dx.doi.org/10.1006/excr.1994.1172 PubMed DOI

Fléchon JE, Kopecný V. The nature of the “nucleolus precursor body” in early preimplantation embryos: a review of fine-structure cytochemical, immunocytochemical and autoradiographic data related to nucleolar function. Zygote 1998; 6:183-91; PMID:9770784; http://dx.doi.org/10.1017/S0967199498000112 PubMed DOI

Aoki E, Schultz RM. DNA replication in the 1-cell mouse embryo: stimulatory effect of histone acetylation. Zygote 1999; 7:165-72; PMID:10418111; http://dx.doi.org/10.1017/S0967199499000532 PubMed DOI

Liu H, Kim J-M, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 2004; 131:2269-80; PMID:15102709; http://dx.doi.org/10.1242/dev.01116 PubMed DOI

Burton A, Torres-Padilla ME. Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief in Funct Genomics 2011; 9:444-54; PMID:21186177; http://dx.doi.org/10.1093/bfgp/elq027 PubMed DOI PMC

Wiekowski M, Miranda M, DePamphilis ML. Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol 1993; 159:366-78; PMID:8365573; http://dx.doi.org/10.1006/dbio.1993.1248 PubMed DOI

Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 1997; 181:296-307; PMID:9013938; http://dx.doi.org/10.1006/dbio.1996.8466 PubMed DOI

Majumder S, Miranda M, DePamphilis ML. Analysis of gene expression in mouse preimplantation embryos demonstrates that the primary role of enhancers is to relieve repression of promoters. EMBO J 1993; 12:1131-40; PMID:8458327 PubMed PMC

Cho T, Sakai S, Nagata M, Aoki F. Involvement of chromatin structure in the regulation of mouse zygotic gene activation. Anim Sci J 2002; 73:113-22; http://dx.doi.org/10.1046/j.1344-3941.2002.00017.x DOI

Akiyama T, Suzuki O, Matsuda J, Aoki F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 2011; 7:e1002279. PubMed PMC

Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394:369-74; PMID:9690471; http://dx.doi.org/10.1038/28615 PubMed DOI

Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385:810-3; PMID:9039911; http://dx.doi.org/10.1038/385810a0 PubMed DOI

Meissner A, Jaenisch R. Mammalian nuclear transfer. Dev Dyn 2006; 235:2460-9; PMID:16881069; http://dx.doi.org/10.1002/dvdy.20915 PubMed DOI

Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays 1993; 15:531-8; PMID:8135766; http://dx.doi.org/10.1002/bies.950150806 PubMed DOI

Stees J, Varn F, Huang S, Strouboulis J, Bungert J. Recruitment of transcription complexes to enhancers and the role of enhancer transcription. Biology 2012; 1:778-93; PMID:23919179; http://dx.doi.org/10.3390/biology1030778 PubMed DOI PMC

Conover JC, Temeles GL, Zimmermann JW, Burke B, Schultz RM. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev Biol 1991; 144:392-404; PMID:2010038; http://dx.doi.org/10.1016/0012-1606(91)90431-2 PubMed DOI

Wiekowski M, Miranda M, DePamphilis ML. Regulation of gene expression in preimplantation mouse embryos: effects of the zygotic clock and the first mitosis on promoter and enhancer activities. Dev Biol 1991; 147:403-14; PMID:1916016; http://dx.doi.org/10.1016/0012-1606(91)90298-H PubMed DOI

Majumder S, DePamphilis ML. A unique role for enhancers is revealed during early mouse development. Bioessays 1995; 17:879-89; PMID:7487969; http://dx.doi.org/10.1002/bies.950171010 PubMed DOI

Abe K-I, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, Vlahovicek K, Svoboda P, Schultz RM, Aoki F. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO J 2015; 34:1523-37; PMID:25896510; http://dx.doi.org/10.15252/embj.201490648 PubMed DOI PMC

Bošković A, Eid A, Pontabry J, Ishiuchi T, Spiegelhalter C, Raghu Ram EVS, Meshorer E, Torres-Padilla M-E. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev 2014; 28:1042-7; PMID:24831699; http://dx.doi.org/10.1101/gad.238881.114 PubMed DOI PMC

Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RDG, Buetow KH, et al.. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008; 2:437-47; PMID:18462694; http://dx.doi.org/10.1016/j.stem.2008.03.021 PubMed DOI PMC

Ishiuchi T, Enriquez-Gasca R, Mizutani E, cacute ABSK, Ziegler-Birling C, Rodriguez-Terrones D, Wakayama T, Vaquerizas JM, Torres-Padilla M-E. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 2015; 22:662-671; PMID:26237512; http://dx.doi.org/10.1038/nsmb.3066 PubMed DOI

Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 2006; 103:6428-35; PMID:16571659; http://dx.doi.org/10.1073/pnas.0600803103 PubMed DOI PMC

Tanaka M, Hennebold JD, Macfarlane J, Adashi EY. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 2001; 128:655-64; PMID:11171391 PubMed

Hayakawa K, Ohgane J, Tanaka S, Yagi S, Shiota K. Oocyte-specific linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency. Epigenetics 2012; 7:1029-36; PMID:22868987; http://dx.doi.org/10.4161/epi.21492 PubMed DOI PMC

Teranishi T, Tanaka M, Kimoto S, Ono Y, Miyakoshi K, Kono T, Yoshimura Y. Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev Biol 2004; 266:76-86; PMID:14729479; http://dx.doi.org/10.1016/j.ydbio.2003.10.004 PubMed DOI

Nashun B, Akiyama T, Suzuki MG, Aoki F. Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics 2011; 6:1489-97; PMID:22139579; http://dx.doi.org/10.4161/epi.6.12.18206 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...