Short but Weak: The Z-DNA Lone-Pair⋅⋅⋅π Conundrum Challenges Standard Carbon Van der Waals Radii
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Z-DNA, lp⋅⋅⋅π interactions, molecular recognition, non-covalent interactions, van der Waals radii,
- MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Quantum Theory * MeSH
- Carbon chemistry MeSH
- DNA, Z-Form chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Carbon MeSH
- DNA, Z-Form MeSH
Current interest in lone-pair⋅⋅⋅π (lp⋅⋅⋅π) interactions is gaining momentum in biochemistry and (supramolecular) chemistry. However, the physicochemical origin of the exceptionally short (ca. 2.8 Å) oxygen-to-nucleobase plane distances observed in prototypical Z-DNA CpG steps remains unclear. High-level quantum mechanical calculations, including SAPT2+3 interaction energy decompositions, demonstrate that lp⋅⋅⋅π contacts do not result from n→π* orbital overlaps but from weak dispersion and electrostatic interactions combined with stereochemical effects imposed by the locally strained structural context. They also suggest that the carbon van der Waals (vdW) radii, originally derived for sp3 carbons, should not be used for smaller sp2 carbons attached to electron-withdrawing groups. Using a more adapted carbon vdW radius results in these lp⋅⋅⋅π contacts being no longer of the sub-vdW type. These findings challenge the whole lp⋅⋅⋅π concept that refers to elusive orbital interactions that fail to explain short interatomic contact distances.
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Université de Strasbourg CNRS Architecture et Réactivité de l'ARN UPR9002 F 67000 Strasbourg France
See more in PubMed
M. Egli, R. V. Gessner, Proc. Natl. Acad. Sci. USA 1995, 92, 180-184;
E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210-1250;
Angew. Chem. 2003, 115, 1244-1287;
M. Egli, S. Sarkhel, Acc. Chem. Res. 2007, 40, 197-205;
L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808-4842;
Angew. Chem. 2011, 123, 4908-4944;
N. Mohan, C. H. Suresh, A. Kumar, S. R. Gadre, Phys. Chem. Chem. Phys. 2013, 15, 18401-18409;
S. K. Singh, A. Das, Phys. Chem. Chem. Phys. 2015, 17, 9596-9612;
J. Novotný, S. Bazzi, R. Marek, J. Kozelka, Phys. Chem. Chem. Phys. 2016, 18, 19472-19481;
M. Chawla, E. Chermak, Q. Zhang, J. M. Bujnicki, R. Oliva, L. Cavallo, Nucleic Acids Res. 2017, 45, 11019-11032;
J. Kozelka, Eur. Biophys. J. 2017, 46, 729-737.
T. J. Mooibroek, P. Gamez, J. Reedijk, CrystEngComm 2008, 10, 1501-1515;
A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem 2015, 16, 2496-2517.
A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637-646;
Y. Zhao, Y. Cotelle, L. Liu, J. Lopez-Andarias, A. B. Bornhof, M. Akamatsu, N. Sakai, S. Matile, Acc. Chem. Res. 2018, 51, 2255-2263.
J. Sponer, H. A. Gabb, J. Leszczynski, P. Hobza, Biophys. J. 1997, 73, 76-87.
A. H. J. Wang, G. J. Quigley, F. J. Kolpak, G. Vandermarel, J. H. Vanboom, A. Rich, Science 1981, 211, 171-176.
L. D'Ascenzo, F. Leonarski, Q. Vicens, P. Auffinger, Nucleic Acids Res. 2016, 44, 5944-5956;
L. D'Ascenzo, F. Leonarski, Q. Vicens, P. Auffinger, RNA 2017, 23, 259-269.
K. Brzezinski, A. Brzuszkiewicz, M. Dauter, M. Kubicki, M. Jaskolski, Z. Dauter, Nucleic Acids Res. 2011, 39, 6238-6248.
G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834-4843.
R. Chandrasekaran, S. Arnott, J. Biomol. Struct. Dyn. 1996, 13, 1015-1027.
A. Bondi, J. Chem. Phys. 1964, 68, 441-451;
S. Alvarez, Dalton Trans. 2013, 42, 8617-8636.
M. Savastano, C. Garcia-Gallarin, M. D. Lopez de la Torre, C. Bazzicalupi, A. Bianchi, M. Melguizo, Coord. Chem. Rev. 2019, 397, 112-137.
T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48-76;
Angew. Chem. 2002, 114, 50-80;
I. Dance, New J. Chem. 2003, 27, 22-27;
G. P. Schiemenz, Z. Naturforsch. B 2007, 62, 235-243;
S. Z. Hu, Z. H. Zhou, Z. X. Xie, B. E. Robertson, Z. Kristallogr. 2014, 229, 517-523.
J. D. Dunitz, A. Gavezzotti, Acc. Chem. Res. 1999, 32, 677-684;
J. D. Dunitz, A. Gavezzotti, Angew. Chem. Int. Ed. 2005, 44, 1766-1787;
Angew. Chem. 2005, 117, 1796-1819;
J. D. Dunitz, A. Gavezzotti, Chem. Soc. Rev. 2009, 38, 2622-2633;
A. Gavezzotti, Acta Crystallogr. Sect. B 2010, 66, 396-406;
J. D. Dunitz, IUCrJ 2015, 2, 157-158.
J. D. Dunitz, A. Gavezzotti, S. Rizzato, Cryst. Growth Des. 2014, 14, 357-366.
F. Leonarski, L. D'Ascenzo, P. Auffinger, Nucleic Acids Res. 2017, 45, 987-1004.
H. Kruse, P. Banas, J. Sponer, J. Chem. Theory Comput. 2019, 15, 95-115.
E. G. Hohenstein, C. D. Sherill, WiREs Comput. Mol. Sci. 2012, 2, 304-326.
G. Gryn'ova, C. Corminboeuf, Beilstein J. Org. Chem. 2018, 14, 1482-1490.
T. Bitter, K. Ruedenberg, W. H. Schwarz, J. Comput. Chem. 2007, 28, 411-422.
P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 2006, 8, 1985-1993.
E. D. Glendening, C. R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2012, 2, 1-42.
R. Taylor, P. A. Wood, Chem. Rev. 2019, 119, 9427-9477.
P. Politzer, P. Jin, J. S. Murray, J. Chem. Phys. 2002, 117, 8197-8202.
M. Malinska, Z. Dauter, Acta Crystallogr. Sect. D 2016, 72, 770-779.
B. W. Gung, Y. Zou, Z. G. Xu, J. C. Amicangelo, D. G. Irwin, S. Q. Ma, H. C. Zhou, J. Org. Chem. 2008, 73, 689-693.
T. M. Parker, E. G. Hohenstein, R. M. Parrish, N. V. Hud, C. D. Sherrill, J. Am. Chem. Soc. 2013, 135, 1306-1316.
P. Auffinger, E. Westhof, RNA 2001, 7, 334-341.
L. Glasser in Fundamental Principles of Molecular Modeling (Eds.: W. Gans, A. Amann, J. C. A. Boeyens), Springer, New York, 1996.
P. Csermely, Trends Biochem. Sci. 2004, 29, 331-334;
A. S. Batsanov, Acta Crystallogr. Sect. E 2018, 74, 570-574.
O. Khakshoor, S. E. Wheeler, K. N. Houk, E. T. Kool, J. Am. Chem. Soc. 2012, 134, 3154-3163.
H. Kruse, J. Sponer, P. Auffinger, J. Chem. Inf. Model. 2019, 59, 3605-3608.
H. B. Bürgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95, 5065-5067;
H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipff, Tetrahedron 1974, 30, 1563-1572.
B. Worley, G. Richard, G. S. Harbison, R. Powers, PLoS One 2012, 7, e42075.
S. Grimme, Angew. Chem. Int. Ed. 2008, 47, 3430-3434;
Angew. Chem. 2008, 120, 3478-3483;
C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191-2201.
S. Kozuch, D. Gruzman, J. M. L. Martin, J. Phys. Chem. 2010, 114, 20801-20808.
J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295-305.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
L. A. Burns, M. S. Marshall, C. D. Sherrill, J. Chem. Phys. 2014, 141, 234111.
E. G. Hohenstein, C. D. Sherrill, J. Chem. Phys. 2010, 133, 104107;
T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherill, J. Chem. Phys. 2014, 140, 094106.
A. J. Stone, A. J. Misquitta, Chem. Phys. Lett. 2009, 473, 201-205.