Short but Weak: The Z-DNA Lone-Pair⋅⋅⋅π Conundrum Challenges Standard Carbon Van der Waals Radii

. 2020 Sep 14 ; 59 (38) : 16553-16560. [epub] 20200715

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32516461

Current interest in lone-pair⋅⋅⋅π (lp⋅⋅⋅π) interactions is gaining momentum in biochemistry and (supramolecular) chemistry. However, the physicochemical origin of the exceptionally short (ca. 2.8 Å) oxygen-to-nucleobase plane distances observed in prototypical Z-DNA CpG steps remains unclear. High-level quantum mechanical calculations, including SAPT2+3 interaction energy decompositions, demonstrate that lp⋅⋅⋅π contacts do not result from n→π* orbital overlaps but from weak dispersion and electrostatic interactions combined with stereochemical effects imposed by the locally strained structural context. They also suggest that the carbon van der Waals (vdW) radii, originally derived for sp3 carbons, should not be used for smaller sp2 carbons attached to electron-withdrawing groups. Using a more adapted carbon vdW radius results in these lp⋅⋅⋅π contacts being no longer of the sub-vdW type. These findings challenge the whole lp⋅⋅⋅π concept that refers to elusive orbital interactions that fail to explain short interatomic contact distances.

Zobrazit více v PubMed

M. Egli, R. V. Gessner, Proc. Natl. Acad. Sci. USA 1995, 92, 180-184;

E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210-1250;

Angew. Chem. 2003, 115, 1244-1287;

M. Egli, S. Sarkhel, Acc. Chem. Res. 2007, 40, 197-205;

L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808-4842;

Angew. Chem. 2011, 123, 4908-4944;

N. Mohan, C. H. Suresh, A. Kumar, S. R. Gadre, Phys. Chem. Chem. Phys. 2013, 15, 18401-18409;

S. K. Singh, A. Das, Phys. Chem. Chem. Phys. 2015, 17, 9596-9612;

J. Novotný, S. Bazzi, R. Marek, J. Kozelka, Phys. Chem. Chem. Phys. 2016, 18, 19472-19481;

M. Chawla, E. Chermak, Q. Zhang, J. M. Bujnicki, R. Oliva, L. Cavallo, Nucleic Acids Res. 2017, 45, 11019-11032;

J. Kozelka, Eur. Biophys. J. 2017, 46, 729-737.

T. J. Mooibroek, P. Gamez, J. Reedijk, CrystEngComm 2008, 10, 1501-1515;

A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem 2015, 16, 2496-2517.

A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637-646;

Y. Zhao, Y. Cotelle, L. Liu, J. Lopez-Andarias, A. B. Bornhof, M. Akamatsu, N. Sakai, S. Matile, Acc. Chem. Res. 2018, 51, 2255-2263.

J. Sponer, H. A. Gabb, J. Leszczynski, P. Hobza, Biophys. J. 1997, 73, 76-87.

A. H. J. Wang, G. J. Quigley, F. J. Kolpak, G. Vandermarel, J. H. Vanboom, A. Rich, Science 1981, 211, 171-176.

L. D'Ascenzo, F. Leonarski, Q. Vicens, P. Auffinger, Nucleic Acids Res. 2016, 44, 5944-5956;

L. D'Ascenzo, F. Leonarski, Q. Vicens, P. Auffinger, RNA 2017, 23, 259-269.

K. Brzezinski, A. Brzuszkiewicz, M. Dauter, M. Kubicki, M. Jaskolski, Z. Dauter, Nucleic Acids Res. 2011, 39, 6238-6248.

G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834-4843.

R. Chandrasekaran, S. Arnott, J. Biomol. Struct. Dyn. 1996, 13, 1015-1027.

A. Bondi, J. Chem. Phys. 1964, 68, 441-451;

S. Alvarez, Dalton Trans. 2013, 42, 8617-8636.

M. Savastano, C. Garcia-Gallarin, M. D. Lopez de la Torre, C. Bazzicalupi, A. Bianchi, M. Melguizo, Coord. Chem. Rev. 2019, 397, 112-137.

T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48-76;

Angew. Chem. 2002, 114, 50-80;

I. Dance, New J. Chem. 2003, 27, 22-27;

G. P. Schiemenz, Z. Naturforsch. B 2007, 62, 235-243;

S. Z. Hu, Z. H. Zhou, Z. X. Xie, B. E. Robertson, Z. Kristallogr. 2014, 229, 517-523.

J. D. Dunitz, A. Gavezzotti, Acc. Chem. Res. 1999, 32, 677-684;

J. D. Dunitz, A. Gavezzotti, Angew. Chem. Int. Ed. 2005, 44, 1766-1787;

Angew. Chem. 2005, 117, 1796-1819;

J. D. Dunitz, A. Gavezzotti, Chem. Soc. Rev. 2009, 38, 2622-2633;

A. Gavezzotti, Acta Crystallogr. Sect. B 2010, 66, 396-406;

J. D. Dunitz, IUCrJ 2015, 2, 157-158.

J. D. Dunitz, A. Gavezzotti, S. Rizzato, Cryst. Growth Des. 2014, 14, 357-366.

F. Leonarski, L. D'Ascenzo, P. Auffinger, Nucleic Acids Res. 2017, 45, 987-1004.

H. Kruse, P. Banas, J. Sponer, J. Chem. Theory Comput. 2019, 15, 95-115.

E. G. Hohenstein, C. D. Sherill, WiREs Comput. Mol. Sci. 2012, 2, 304-326.

G. Gryn'ova, C. Corminboeuf, Beilstein J. Org. Chem. 2018, 14, 1482-1490.

T. Bitter, K. Ruedenberg, W. H. Schwarz, J. Comput. Chem. 2007, 28, 411-422.

P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 2006, 8, 1985-1993.

E. D. Glendening, C. R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2012, 2, 1-42.

R. Taylor, P. A. Wood, Chem. Rev. 2019, 119, 9427-9477.

P. Politzer, P. Jin, J. S. Murray, J. Chem. Phys. 2002, 117, 8197-8202.

M. Malinska, Z. Dauter, Acta Crystallogr. Sect. D 2016, 72, 770-779.

B. W. Gung, Y. Zou, Z. G. Xu, J. C. Amicangelo, D. G. Irwin, S. Q. Ma, H. C. Zhou, J. Org. Chem. 2008, 73, 689-693.

T. M. Parker, E. G. Hohenstein, R. M. Parrish, N. V. Hud, C. D. Sherrill, J. Am. Chem. Soc. 2013, 135, 1306-1316.

P. Auffinger, E. Westhof, RNA 2001, 7, 334-341.

L. Glasser in Fundamental Principles of Molecular Modeling (Eds.: W. Gans, A. Amann, J. C. A. Boeyens), Springer, New York, 1996.

P. Csermely, Trends Biochem. Sci. 2004, 29, 331-334;

A. S. Batsanov, Acta Crystallogr. Sect. E 2018, 74, 570-574.

O. Khakshoor, S. E. Wheeler, K. N. Houk, E. T. Kool, J. Am. Chem. Soc. 2012, 134, 3154-3163.

H. Kruse, J. Sponer, P. Auffinger, J. Chem. Inf. Model. 2019, 59, 3605-3608.

H. B. Bürgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95, 5065-5067;

H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipff, Tetrahedron 1974, 30, 1563-1572.

B. Worley, G. Richard, G. S. Harbison, R. Powers, PLoS One 2012, 7, e42075.

S. Grimme, Angew. Chem. Int. Ed. 2008, 47, 3430-3434;

Angew. Chem. 2008, 120, 3478-3483;

C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191-2201.

S. Kozuch, D. Gruzman, J. M. L. Martin, J. Phys. Chem. 2010, 114, 20801-20808.

J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295-305.

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.

L. A. Burns, M. S. Marshall, C. D. Sherrill, J. Chem. Phys. 2014, 141, 234111.

E. G. Hohenstein, C. D. Sherrill, J. Chem. Phys. 2010, 133, 104107;

T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherill, J. Chem. Phys. 2014, 140, 094106.

A. J. Stone, A. J. Misquitta, Chem. Phys. Lett. 2009, 473, 201-205.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...