Local Mechanical Properties and Microstructure of EN AW 6082 Aluminium Alloy Processed via ECAP-Conform Technique
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007350
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000836
European Regional Development Fund
PubMed
32516893
PubMed Central
PMC7321566
DOI
10.3390/ma13112572
PII: ma13112572
Knihovny.cz E-zdroje
- Klíčová slova
- EBSD analysis, ECAP–Conform, local mechanical properties, micro-tensile techniques,
- Publikační typ
- časopisecké články MeSH
An ultrafine-grained EN AW 6082 aluminum alloy was prepared by continuous serve plastic deformation (i.e., thermo-mechanical equal channel angular pressing (ECAP)-Conform process). A miniaturized tensile testing technique was used for estimating local mechanical properties with the aim to reveal the inhomogeneity of elastic and plastic properties in a workpiece volume. These inhomogeneities may appear due to the irregular shear strain distribution in a Conformed wire. Miniaturized samples for tensile testing were cut from the Conformed workpiece. Elongation of miniaturized samples was measured with a 2D digital image correlation technique as the optical extensometer. Tensile test characteristics, such as the yield strength and ultimate tensile strength, were consequently compared with results of conventional and hardness tests. The microstructure of Conformed bars was studied in the cross-section perpendicular and parallel to the extrusion direction using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) analysis. The microstructure of samples exhibits pronounced inhomogeneity, which is reflected by the hardness and tensile test results. Estimated distinctions between peripheral and central parts of the Conformed wires are probably a consequence of the significant strain differences realized in the upper and bottom wire parts.
COMTES FHT Průmyslová 995 33441 Dobřany Czech Republic
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 12116 Praha 2 Czech Republic
Zobrazit více v PubMed
Valiev R., Islamgaliev R., Alexandrov I. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Zrník J., Dobatkin S.V., Fujda M., Džugan J. Effect of Preliminary Treatment on Grain Refinement of Medium Carbon Steel Using ECAP at Increased Temperature. Mater. Sci. Forum. 2010;638:2013–2018. doi: 10.4028/www.scientific.net/MSF.638-642.2013. DOI
Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038. DOI
Estrin Y., Janecek M., Raab G., Valiev R., Zi A. Severe Plastic Deformation as a Means of Producing Ultra-Fine-Grained Net-Shaped Micro Electro-Mechanical Systems Parts. Met. Mater. Trans. A. 2007;38:1906–1909. doi: 10.1007/s11661-007-9120-y. DOI
Horita Z., Fujinami T., Langdon T.G. The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties. Mater. Sci. Eng. A. 2001;318:34–41. doi: 10.1016/S0921-5093(01)01339-9. DOI
Horita Z., Fujinami T., Nemoto M., Langdon T.G. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Met. Mater. Trans. A. 2000;31:691–701. doi: 10.1007/s11661-000-0011-8. DOI
Xu C., Schroeder S., Berbon P.B., Langdon T.G. Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy. Acta Mater. 2010;58:1379–1386. doi: 10.1016/j.actamat.2009.10.044. DOI
Hu J., Zhang W., Fu D., Teng J., Zhang H. Improvement of the mechanical properties of Al–Mg–Si alloys with nano-scale precipitates after repetitive continuous extrusion forming and T8 tempering. J. Mater. Res. Technol. 2019;8:5950–5960. doi: 10.1016/j.jmrt.2019.09.070. DOI
Ding S., Chang C.P., Kao P. Effects of Processing Parameters on the Grain Refinement of Magnesium Alloy by Equal-Channel Angular Extrusion. Met. Mater. Trans. A. 2009;40:415–425. doi: 10.1007/s11661-008-9747-3. DOI
Seipp S., Wagner M.F.-X., Hockauf K., Schneider I., Meyer L.W., Hockauf M. Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing. Int. J. Plast. 2012;35:155–166. doi: 10.1016/j.ijplas.2012.03.007. DOI
Bryla K., Dutkiewicz J., Malczewski P. Grain refinement in AZ31 alloy processed by equal channel angular pressing. Arch. Mater. Sci. Eng. 2009;40:17–22.
Jin L., Lin D., Mao D., Zeng X., Chen B., Ding W. Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion. Mater. Sci. Eng. A. 2006;423:247–252. doi: 10.1016/j.msea.2006.02.045. DOI
Vinogradov A., Estrin Y. Analytical and numerical approaches to modelling severe plastic deformation. Prog. Mater. Sci. 2018;95:172–242. doi: 10.1016/j.pmatsci.2018.02.001. DOI
Hodek J., Kubina T. FEM Model and Experimental Production of Titanium Rods Using Conform Machine. TANGER; Ostrava, Czech Republic: 2013. pp. 347–351.
Fakhretdinova E., Raab G., Ryzhikov O., Valiev R.Z. Processing ultrafine-grained Aluminum alloy using Multi-ECAP-Conform technique. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012037. doi: 10.1088/1757-899X/63/1/012037. DOI
Murashkin M., Sabirov I., Prosvirnin D., Ovid’Ko I., Terentiev V., Valiev R.Z., Dobatkin S. Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion. Metals. 2015;5:578–590. doi: 10.3390/met5020578. DOI
Raab G.J., Valiev R.Z., Lowe T.C., Zhu Y. Continuous processing of ultrafine grained Al by ECAP–Conform. Mater. Sci. Eng. A. 2004;382:30–34. doi: 10.1016/j.msea.2004.04.021. DOI
Xu C., Száraz Z., Trojanová Z., Lukáč P., Langdon T.G. Evaluating plastic anisotropy in two aluminum alloys processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2008;497:206–211. doi: 10.1016/j.msea.2008.06.045. DOI
Trojanová Z., Džugan J., Halmešová K., Németh G., Minárik P., Lukáč P., Bohlen J. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets. Materials. 2018;11:73. doi: 10.3390/ma11010073. PubMed DOI PMC
Máthis K., Köver M., Stráská J., Trojanová Z., Džugan J., Halmešová K. Micro-Tensile Behavior of Mg-Al-Zn Alloy Processed by Equal Channel Angular Pressing (ECAP) Materials. 2018;11:1644. doi: 10.3390/ma11091644. PubMed DOI PMC
Trojanová Z., Halmešová K., Džugan J., Palček P., Minárik P., Lukáč P. Influence of strain rate on deformation behaviour of an AX52 alloy processed by equal channel angular pressing (ECAP) Lett. Mater. 2018;8:517–523. doi: 10.22226/2410-3535-2018-4-517-523. DOI
Kubina T., Dlouhy J., Kövér M., Hodek J. Study of Thermal Stability of Ultra Fine-Grained Commercially Pure Titanium Wire Prepared in Conform Equipment. Mater. Sci. Forum. 2014;782:415–420. doi: 10.4028/www.scientific.net/MSF.782.415. DOI
Jirková H., Rubešová K., Konopík P., Opatová K. Effect of the Parameters of Semi-Solid Processing on the Elimination of Sharp-Edged Primary Chromium Carbides from Tool Steel. Metals. 2018;8:713. doi: 10.3390/met8090713. DOI
Džugan J., Konopík P., Trojanová Z., Procházka R. SPD Processed Materials Mechanical Properties Determination with the Use of Miniature Specimens. Mater. Sci. Forum. 2016;879:471–476. doi: 10.4028/www.scientific.net/MSF.879.471. DOI
Konopík P., Džugan J., Procházka R. Evaluation of Local Mechanical Properties of Steel Weld by Miniature Testing Technique. MS and T; Rolla, MO, USA: 2013. pp. 2404–2411.
Džugan J., Konopík P., Procházka R. Micro-Tensile test technique development and application to mechanical property determination. Small Spec. Test Tech. 2014;6:12–30. doi: 10.1520/STP157620140022. DOI
Maleček L., Palán J., Nacházel J., Dlouhy J. Influence of rotary swaging and subsequent age hardening on properties of EN AW 6082 aluminium alloy. IOP Conf. Ser. Mater. Sci. Eng. 2017;179:12049. doi: 10.1088/1757-899X/179/1/012049. DOI
Salehi M.S., Anjabin N., Kim H.S. Study of Geometrically Necessary Dislocations of a Partially Recrystallized Aluminum Alloy Using 2D EBSD. Microsc. Microanal. 2019;25:656–663. doi: 10.1017/S1431927619000382. PubMed DOI
Derakhshan J.F., Parsa M., Jafarian H. Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process. Mater. Sci. Eng. A. 2019;747:120–129. doi: 10.1016/j.msea.2019.01.058. DOI
Dmitriev A.I., Nikonov A.Y., Shugurov A.R., Panin A.V. The Role of Grain Boundaries in Rotational Deformation in Polycrystalline Titanium under Scratch Testing. Phys. Mesomech. 2019;22:365–374. doi: 10.1134/S1029959919050035. DOI
De Castro V., Leguey T., Muñoz A., Monge M., Pareja R. Relationship between hardness and tensile tests in titanium reinforced with yttria nanoparticles. Mater. Sci. Eng. A. 2005;400:345–348. doi: 10.1016/j.msea.2005.03.070. DOI
Ashby M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970;21:399–424. doi: 10.1080/14786437008238426. DOI