Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29303975
PubMed Central
PMC5793571
DOI
10.3390/ma11010073
PII: ma11010073
Knihovny.cz E-zdroje
- Klíčová slova
- accumulative roll bonding, dynamic recrystallization, magnesium alloy, tensile anisotropy, texture, twinning,
- Publikační typ
- časopisecké články MeSH
Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour.
Zobrazit více v PubMed
Polmear I.J. Magnesium alloys and applications. Mater. Sci. Technol. 1994;10:1–16. doi: 10.1179/mst.1994.10.1.1. DOI
Ma R., Zhao Y., Wang Y. Grain refinement and mechanical properties improvement of AZ31 Mg alloy sheet obtained by two-stage rolling. Mater. Sci. Eng. A. 2017;691:81–87. doi: 10.1016/j.msea.2017.02.107. DOI
Watanabe H., Mukai T., Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. J. Mater. Sci. 2004;39:1477–1480. doi: 10.1023/B:JMSC.0000013922.16079.d3. DOI
Agnew S.R., Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005;21:1161–1193. doi: 10.1016/j.ijplas.2004.05.018. DOI
Mises R.V. Mechanik der plastischen Formänderung von Kristallen. Zeitschrift für Angew. Math. Und Mech. 1928;8:161–185. doi: 10.1002/zamm.19280080302. DOI
Máthis K., Nyilas K., Axt A., Dragomir-Cernatescu I., Ungar T., Lukáč P. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Mater. 2004;52:2889–2894. doi: 10.1016/j.actamat.2004.02.034. DOI
Saito Y., Utsunomiya H., Tsuji N., Sakai T. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583. doi: 10.1016/S1359-6454(98)00365-6. DOI
Pawar S., Zhou X., Hashimoto T., Thompson G.E., Scamans G., Fan Z. Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy. J. Alloys Compd. 2015;628:195–198. doi: 10.1016/j.jallcom.2014.12.028. DOI
Schwarz F., Eilers C., Krűger L. Mechanical properties of an AM20 magnesium alloy processed by accumulative roll binding. Mater. Charact. 2015;105:144–153. doi: 10.1016/j.matchar.2015.03.032. DOI
Tsui N., Saito Y., Lee S.H., Minamino Y. ARB (Accumulative Roll Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 2003;5:338–344. doi: 10.1002/adem.200310077. DOI
Li B.L., Tsui N., Kamikawa N. Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding. Mater. Sci. Eng. A. 2006;423:331–342. doi: 10.1016/j.msea.2006.02.028. DOI
Kamikawa N., Sakai T., Tsuji N. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater. 2007;55:5873–5888. doi: 10.1016/j.actamat.2007.07.002. DOI
Huang X., Tsuji N., Hansen N., Minamino Y. Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. Eng. A. 2003;340:265–271. doi: 10.1016/S0921-5093(02)00182-X. DOI
Jiang L., Pérez-Prado M.T., Gruber P.A., Arzt E., Ruano O.A., Kassner M.E. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding. Acta Mater. 2008;56:1228–1242. doi: 10.1016/j.actamat.2007.11.017. DOI
Ghafari-Gousheh S., Nedjad S.H., Khalil-Allafi J. Tensile properties and interfacial bonding of multi-layered, high-purity titanium strips fabricated by ARB process. J. Mech. Behav. Biomed. Mater. 2015;51:147–151. doi: 10.1016/j.jmbbm.2015.07.012. PubMed DOI
Chen W., Zhang W., Qiao Y., Miao Q., Wang E. Enhanced ductility in high-strength fine-grained magnesium and magnesium alloy sheets processed via multi-pass rolling with lowered temperature. J. Alloys Compd. 2016;665:13–20. doi: 10.1016/j.jallcom.2016.01.032. DOI
Del Valle J.A., Pérez-Prado M.T., Ruano O.A. Accumulative roll bonding of a Mg-based AZ61 alloy. Mater. Sci. Eng. A. 2005;410:353–357. doi: 10.1016/j.msea.2005.08.097. DOI
Pérez-Prado M.T., Ruano O.A. Texture evolution during annealing of magnesium AZ31 alloy. Scr. Mater. 2002;46:149–155. doi: 10.1016/S1359-6462(01)01212-X. DOI
Pérez-Prado M.T., Del Valle, Ruano O.A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scr. Mater. 2004;51:1093–1097. doi: 10.1016/j.scriptamat.2004.07.028. DOI
Balík J., Dobroň P., Chmelík F., Kužel R., Drozdenko D., Bohlen J., Letzig D., Lukáč P. Modeling of the work hardening in magnesium alloy sheets. Int. J. Plast. 2016;76:166–185. doi: 10.1016/j.ijplas.2015.08.001. DOI
Balík J., Lukáč P., Drozd Z., Kužel R. Strain-hardening behaviour of AZ31 magnesium alloys. Int. J. Mater. Res. 2009;100:322–325. doi: 10.3139/146.110042. DOI
Drozd Z., Trojanová Z., Halmešová K., Džugan J., Lukáč P., Minárik P. Anisotropy of thermal expansion in an AZ31 magnesium alloy subjected to the accumulative roll bonding. ACTA Phys. Pol. A. 2018 accepted.
Mises R.V. Mechanik der festen Körper im plastisch- deformable state. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1913;1913:582–592.
Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX–Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI
Ohno M., Mirkovic D., Schmid-Fetzer R. Liquidus and solidus temperatures of Mg-rich Mg-Al-Mn-Zn alloys. Acta Mater. 2006;54:3883–3891. doi: 10.1016/j.actamat.2006.04.022. DOI
Ion S.E., Humphreys F.J., White S.H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 1982;30:1909–1919. doi: 10.1016/0001-6160(82)90031-1. DOI
Wang Q.F., Xiao X.P., Hu J., Xu W.W., Zhao X.Q., Zhao S.J. An Ultrafine-Grained AZ31 Magnesium Alloy Sheet With Enhanced Superplasticity Prepared by Accumulative Roll Bonding. J. Iron Steel Res. Int. 2007;14:167–172. doi: 10.1016/S1006-706X(08)60073-4. DOI
Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI
Balík J., Lukáč P., Kužel R. Basal to Non-Basal Transition for In-Plane Deformation of AZ31 Magnesium Alloys. ACTA Phys. Pol. A. 2012;122:435–438. doi: 10.12693/APhysPolA.122.435. DOI
Armstrong R.W., Balasubramanian N. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements. AIP Adv. 2017;7:085010. doi: 10.1063/1.4996294. DOI
Ono N., Nakamura K., Miura S. Influence of Grain Boundaries on Plastic Deformation in Pure Mg and AZ31 Mg Alloy Polycrystals. Mater. Sci. Forum. 2003;419–422:195–200. doi: 10.4028/www.scientific.net/MSF.419-422.195. DOI
Barnett M.R., Keshavarz Z., Beer A.G., Atwell D. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 2004;52:5093–5103. doi: 10.1016/j.actamat.2004.07.015. DOI
Del Valle J.A., Carreño F., Ruano O.A. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling. Acta Mater. 2006;54:4247–4259. doi: 10.1016/j.actamat.2006.05.018. DOI
Bohlen J., Nürnberg M.R., Senn J.W., Letzig D., Agnew S.R. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007;55:2101–2112. doi: 10.1016/j.actamat.2006.11.013. DOI
Chino Y., Kado M., Mabuchi M. Compressive deformation behavior at room temperature—773K in Mg–0.2 mass%(0.035at.%)Ce alloy. Acta Mater. 2008;56:387–394. doi: 10.1016/j.actamat.2007.09.036. DOI
Mishra R.K., Gupta A.K., Rao P.R., Sachdev A.K., Kumar A.M., Luo A.A. Influence of cerium on the texture and ductility of magnesium extrusions. Scr. Mater. 2008;59:562–565. doi: 10.1016/j.scriptamat.2008.05.019. DOI
Yoo M.H. Slip, twinning, and fracture in hexagonal close-packed matals. Metall. Trans. A Phys. Metall. Mater. Sci. 1981;12:409–418. doi: 10.1007/BF02648537. DOI
Matsubara K., Miyahara Y., Horita Z., Langdon T.G. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater. 2003;51:3073–3084. doi: 10.1016/S1359-6454(03)00118-6. DOI
Brown D.W., Agnew S.R., Bourke M.A.M., Holden T.M., Vogel S.C., Tome C.N. Internal strain and texture evolution during deformation twinning in magnesium. Mater. Sci. Eng. A. 2005;399:1–12. doi: 10.1016/j.msea.2005.02.016. DOI
Máthis K., Chmelík F., Janeček M., Hadzima B., Trojanová Z., Lukáč P. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique. Acta Mater. 2006;54:5361–5366. doi: 10.1016/j.actamat.2006.06.033. DOI
Meyers M.A., Vohringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI
Somekawa H., Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater. Sci. Eng. A. 2013;561:378–385. doi: 10.1016/j.msea.2012.10.040. DOI
Máthis K., Čapek J., Zdražilová Z., Trojanová Z. Investigation of tension-compression asymmetry of magnesium by use of the acoustic emission technique. Mater. Sci. Eng. A. 2011;528:5904–5907. doi: 10.1016/j.msea.2011.03.114. DOI
Ashby M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970;21:399–424. doi: 10.1080/14786437008238426. DOI
Lavrentev F.F., Pokhil Y.A. Relation of dislocation density in different slip systems to work-hardening parameters for magnesium crystals. Mater. Sci. Eng. 1975;18:261–270. doi: 10.1016/0025-5416(75)90179-2. DOI
Starink M.J. Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals. Mater. Sci. Eng. A. 2017;705:42–45. doi: 10.1016/j.msea.2017.08.069. DOI
Trojanová Z., Lukáč P. Physical aspects of plastic deformation in Mg-Al alloys with Sr and Ca. Int. J. Mater. Res. 2009;100:270–276. doi: 10.3139/146.110054. DOI
Panicker R., Chokshi A.H., Mishra R.K., Verma R., Krajewski P.E. Microstructural evolution and grain boundary sliding in a superplastic AZ31 magnesium alloy. Acta Mater. 2009;57:3683–3693. doi: 10.1016/j.actamat.2009.04.011. DOI
Fatigue in an AZ31 Alloy Subjected to Rotary Swaging