Fatigue in an AZ31 Alloy Subjected to Rotary Swaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0134/20
Grant Agency of the Slovak Republic
PubMed
36363132
PubMed Central
PMC9656421
DOI
10.3390/ma15217541
PII: ma15217541
Knihovny.cz E-zdroje
- Klíčová slova
- fatigue life, fractography, magnesium alloy AZ31, non-basal slip, rotary swaging, twinning,
- Publikační typ
- časopisecké články MeSH
The magnesium AZ31 alloy was swaged with rotary pressure with the aim of redefining the microstructure and improving mechanical and fatigue properties. The rotary swaging process and subsequent ageing improved the yield stress in tension and compression. In the present study, the investigation was focused on fatigue behaviour. The samples were cycled in a symmetric regime with a frequency of 35 Hz. A dependence of the stress amplitude on the number of cycles up to the fracture was estimated. The microstructure of the samples and fracture surfaces was analysed with a scanning electron microscope. The fatigue process was influenced by the pronounced texture formed in the swaging process. The fatigue properties of the swaged samples improved substantially-the endurance limit based on 107 cycles was approximately 120 MPa-compared to those of the cast alloy. The analysis of the fracture surfaces showed a transcrystalline fatigue fracture.
Comtes FHT Průmyslová 996 334 41 Dobřany Czech Republic
Department of Materials and Engineering University of Žilina Univerzitná 1 010 26 Žilina Slovakia
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Praha Czech Republic
Research Centre University of Žilina Univerzitná 8215 1 010 26 Žilina Slovakia
Zobrazit více v PubMed
Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Mao Q., Liu Y., Zhao Y. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. J. Alloy. Compd. 2022;896:163122. doi: 10.1016/j.jallcom.2021.163122. DOI
Trojanová Z., Džugan J., Halmešová K., Németh G., Lukáč P., Minárik P., Bohlen J. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets. Materials. 2018;11:73. doi: 10.3390/ma11010073. PubMed DOI PMC
Lukáč P., Trojanová Z., Džugan J., Halmešová K. Mechanical and physical properties of Mg alloys prepared by SPD methods. COMAT 2020. Volume 1178. IOP Publishing; Bristol, UK: 2021. p. 012042. (In IOP Conference Series: Materials Science and Engineering). DOI
Máthis K., Köver M., Stráská J., Trojanová Z., Džugan J., Halmešová K. Micro-Tensile Behavior of Mg-Al-Zn Alloy Processed by Equal Channel Angular Pressing (ECAP) Materials. 2018;11:1644. doi: 10.3390/ma11091644. PubMed DOI PMC
Trojanová Z., Drozd Z., Mathis K., Kövér M., Džugan J., Lukáč P., Halmešová K. Anisotropy of Mechanical Properties of an AZ31 Alloy Prepared by SPD Method. Adv. Mater. Lett. 2019;10:887–892. doi: 10.5185/amlett.2019.0037. DOI
Drozd Z., Trojanová Z., Halmešová K., Džugan J., Lukáč P., Minárik P. Anisotropy of thermal expansion in an AZ31 Magnesium Alloy Subjected to the Accumulative Roll Bonding. Acta Phys. Pol. A. 2018;134:820–823. doi: 10.12693/APhysPolA.134.820. DOI
Mises R.V. Mechanik der festen Körper im plastisch–deformable state. Nachr. Ges. Wiss. Zu Göttingen Math.-Phys. Kl. 1913;1:582–592.
Wu J., Jin L., Dong J., Wang F., Dong S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020;42:175–179. doi: 10.1016/j.jmst.2019.10.010. DOI
Wu Y., Zhang F., Yuan X.Y., Huang H.L., Wen X.C., Wang Y.H., Zhang M.Y., Wu H.H., Liu X.J., Wang H., et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys. J. Mater. Sci. Technol. 2021;62:214–220. doi: 10.1016/j.jmst.2020.06.018. DOI
Mirza A., Chen D.L., Li D.J., Zeng X.Q. Low cycle fatigue of an extruded Mg-3Nd-0.22Zn-0.5Zr magnesium alloy. Mater. Des. 2014;64:63–73.
Murugan G., Radhukandan K., Pillai U.T.S., Pai B.C., Mahadevan K. High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load. Mater. Des. 2009;30:2636–2641. doi: 10.1016/j.matdes.2008.10.032. DOI
Eisenmeier G., Holzwarth B., Höppel H.W., Mugrabi H. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Mater. Sci. Eng. A. 2001;319:578–582. doi: 10.1016/S0921-5093(01)01105-4. DOI
Shih T.S., Liu W.S., Chen Y.J. Fatigue of as extruded AZ61A magnesium alloy. Mater. Sci. Eng. A. 2002;325:152–162. doi: 10.1016/S0921-5093(01)01411-3. DOI
Liu Z., Wang Z., Wang Y., Liu Z. Cyclic deformation behavor of high pressure die casting alloy AM50. J. Mater. Sci. Lett. 1999;18:1567–1569.
Ishihara S., Nan Z., Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy. Mater. Sci. Eng. A. 2007;468:468–470. doi: 10.1016/j.msea.2006.09.124. DOI
Horstemeyer M.F., Yang N., Gall K., McDowell D.L., Fan J., Gullett P.M. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Mater. 2004;52:1327–1336. doi: 10.1016/j.actamat.2003.11.018. DOI
Trojanová Z., Palček P., Chalupová M., Lukáč P., Hlaváčová I. High frequency cycling behaviour of three AZ magnesium alloys—Microstructural characterization. Int. J. Mater. Res. 2016;107:903–915. doi: 10.3139/146.111414. DOI
Zúberová Z., Kunz L., Lamark T.T., Estrin Y., Janeček M. Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metall. Mater. Trans. A. 2007;38A:1934–1940. doi: 10.1007/s11661-007-9109-6. DOI
Matsuzuki M., Horibe S. Analysis of fatigue damage process in magnesium alloy AZ31. Mater. Sci. Eng. A. 2009;504:169–174. doi: 10.1016/j.msea.2008.10.034. DOI
Horynová M., Zapletal J., Doležal P., Gejdoš P. Evaluation of fatigue life of AZ31 magnesium alloy fabricated by squeeze casting. Mater Des. 2013;45:253–264. doi: 10.1016/j.matdes.2012.08.079. DOI
Fintová S., Kunz L. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J. Mech. Behav. Biomed. 2015;42:219–228. doi: 10.1016/j.jmbbm.2014.11.019. PubMed DOI
Kim Y.J., Cha J.E.W., Kim H.J., Kim Y.M., Park S.H. Low-cycle fatigue properties and unified fatigue life prediction equation of hot-rolled twin-roll-cast AZ31 sheets with different thicknesses. Mater. Sci. Eng. A. 2022;833:142349. doi: 10.1016/j.msea.2021.142349. DOI
Wang Y., Culbertson D., Jiang Y. An experimental study of anisotropic fatigue behavior of rolled AZ31B magnesium alloy. Mater. Design. 2020;186:108266. doi: 10.1016/j.matdes.2019.108266. DOI
Nakai Y., Kikuchi S., Asayama K., Yoshinada H. Effects of texture and stress sequence on twinning, detwinning and fatigue crack initiation in extruded magnesium alloy AZ31. Mater. Sci. Eng. A. 2021;826:141941. doi: 10.1016/j.msea.2021.141941. DOI
Sakai Y., Saka M., Yoshida H., Asayama K., Kikuchi S. Fatigue crack initiation site and propagation paths in high-cycle fatigue of magnesium alloy AZ31. Inter. J. Fatigue. 2019;123:248–254.
Jamali A., Ma A., Lorca J. Influence of grain size and grain boundary misorientation on the fatigue crack initiation mechanisms of textured AZ31 Mg alloy. Scr. Mater. 2022;207:114304. doi: 10.1016/j.scriptamat.2021.114304. DOI
Ayer Ö. Effect of die parameters on the grain size, mechanical properties and fracture mechanism of extruded AZ31 magnesium alloys. Mater. Sci. Eng. A. 2020;793:139887. doi: 10.1016/j.msea.2020.139887. DOI
Lu H., Yin R., Zou Q., Zhang J., Liu Z., Zhang X. Effects of micro-twin lamellar structure on the mechanical properties and fracture morphology of AZ31 Mg alloy. Mater. Sci. Eng. A. 2019;735:221–230. doi: 10.1016/j.msea.2018.12.113. DOI
Trojanová Z., Drozd Z., Škraban T., Minárik P., Džugan J., Halmešová K., Németh G., Lukáč P., Chmelík F. Effect of Rotary Swaging on Microstructure and Mechanical Properties of an AZ31 Magnesium Alloy. Adv. Eng. Mater. 2019;22:1900596. doi: 10.1002/adem.201900596. DOI
Trojanová Z., Drozd Z., Halmešová K., Džugan J., Škraban T., Minárik P., Németh G., Lukáč P. Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging. Materials. 2021;14:157. doi: 10.3390/ma14010157. PubMed DOI PMC
Braszczyńska-Malik K.N. Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloy. Compd. 2009;477:870–876. doi: 10.1016/j.jallcom.2008.11.008. DOI
Ohno M., Mirkovic D., Schmid-Fetzer R. Liquidus and solidus temperatures of Mg-richMg-Al-Mn-Zn alloys. Acta Mater. 2006;54:3883–3891. doi: 10.1016/j.actamat.2006.04.022. DOI
Minárik P., Zemková M., Král R., Mhaede M., Wagner L., Hadzima B. Effect of Microstructure on the Corrosion Resistance of the AE42 Magnesium Alloy Processed by Rotary Swaging. Acta Phys. Pol. A. 2015;128:805–807. doi: 10.12693/APhysPolA.128.805. DOI
Armstrong R.W., Balasubramanian N. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements. AIP Adv. 2017;7:085010-1-5. doi: 10.1063/1.4996294. DOI
Meyers M.A., Vohringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI
Somekawa H., Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2013;561:378–385. doi: 10.1016/j.msea.2012.10.040. DOI
Máthis K., Chmelík F., Janeček M., Hadzima B., Trojanová Z., Lukáč P. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique. Acta Mater. 2006;54:5361–5366. doi: 10.1016/j.actamat.2006.06.033. DOI
Máthis K., Čapek J., Zdražilová Z., Trojanová Z. Investigation of tension-compression asymmetry of magnesium by use of the acoustic emission technique. Mater. Sci. Eng. A. 2011;528:5904–5907. doi: 10.1016/j.msea.2011.03.114. DOI
Klimanek P., Pötzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater. Sci. Eng. A. 2002;324:145–150. doi: 10.1016/S0921-5093(01)01297-7. DOI
Máthis K., Csiszar G., Čapek J., Gubicza J., Clausen B., Lukáš P., Vinogradov A., Agnew S.R. Effect of the loading mode on the evolution of the deformation mechanism in randomly textured magnesium polycrystals—Comparison of the experimental and modeling results. Inter. J. Plast. 2015;72:127–150. doi: 10.1016/j.ijplas.2015.05.009. DOI
Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys. Metall. Mater. Trans. A. 2007;36:1689–1696. doi: 10.1007/s11661-005-0032-4. DOI
Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31 B Mg sheet. Int. J. Plast. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI
Bohlen J., Dobroň P., Nascimento L., Parfenenko K., Chmelík F., Letzig D. The Effect of Reserved Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31. Acta Phys. Pol. A. 2012;122:444–449. doi: 10.12693/APhysPolA.122.444. DOI
Lamark T., Chmelík F., Estrin Y., Lukáč P. Cyclic deformation of a magnesium alloy investigated by the acoustic emission technique. J. Alloy. Compd. 2004;378:202–206. doi: 10.1016/j.jallcom.2003.10.100. DOI
Agnew S.R., Tomé C.N., Brown D.W., Holden T.M., Vogel S.C. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr. Mater. 2003;48:1003–1008. doi: 10.1016/S1359-6462(02)00591-2. DOI
Hasegawa S., Tsuchida Y., Yano H., Matsui M. Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int. J. Fatigue. 2007;29:1839–1845. doi: 10.1016/j.ijfatigue.2006.12.003. DOI
Koike J., Ohyama R., Kobayashi T., Suzuki M., Maruyama K. Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater Trans. 2003;44:445–451. doi: 10.2320/matertrans.44.445. DOI
Frost H.J., Ashby M.F. Deformation-Mechanism Maps—The Plasticity and Creep of Metals and Ceramics. Pergamon Press; Oxford, UK: 1982. p. 44.
Lukáš P., Klesnil M. Fatigue of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 1992.
Li Q. Fatigue behaviour of fine-grained magnesium under tension-tension loading at 0 °C. Int. J. Fatigue. 2021;153:106506. doi: 10.1016/j.ijfatigue.2021.106506. DOI
Smith K.N., Watson P., Topper T.H. A stress-strain function for the fatigue of metals. J. Mater. 1970;5:567–578.
Jahed H., Varvanifarahani A. Upper and lower fatigue life limits model using energy-based fatigue properties. Int J Fatigue. 2006;28:467–473. doi: 10.1016/j.ijfatigue.2005.07.039. DOI
Yin S.M., Yang F., Yang X.M., Wu S.D., Li S.X., Li G.Y. The role of twinning–detwinning on fatigue fracture morphology of Mg–3%Al–1%Zn alloy. Mater. Sci. Eng. A. 2008;494:397–400. doi: 10.1016/j.msea.2008.04.056. DOI
Li L., Jie Yang J., Yang Z., Sun Q., Li Tan L., Zeng Q., Zhu M. Towards revealing the relationship between deformation twin and fatigue crack initiation in a rolled magnesium alloy. Mater. Charact. 2021;179:111362. doi: 10.1016/j.matchar.2021.111362. DOI