Fatigue in an AZ31 Alloy Subjected to Rotary Swaging

. 2022 Oct 27 ; 15 (21) : . [epub] 20221027

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36363132

Grantová podpora
VEGA 1/0134/20 Grant Agency of the Slovak Republic

The magnesium AZ31 alloy was swaged with rotary pressure with the aim of redefining the microstructure and improving mechanical and fatigue properties. The rotary swaging process and subsequent ageing improved the yield stress in tension and compression. In the present study, the investigation was focused on fatigue behaviour. The samples were cycled in a symmetric regime with a frequency of 35 Hz. A dependence of the stress amplitude on the number of cycles up to the fracture was estimated. The microstructure of the samples and fracture surfaces was analysed with a scanning electron microscope. The fatigue process was influenced by the pronounced texture formed in the swaging process. The fatigue properties of the swaged samples improved substantially-the endurance limit based on 107 cycles was approximately 120 MPa-compared to those of the cast alloy. The analysis of the fracture surfaces showed a transcrystalline fatigue fracture.

Zobrazit více v PubMed

Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038. DOI

Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI

Mao Q., Liu Y., Zhao Y. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. J. Alloy. Compd. 2022;896:163122. doi: 10.1016/j.jallcom.2021.163122. DOI

Trojanová Z., Džugan J., Halmešová K., Németh G., Lukáč P., Minárik P., Bohlen J. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets. Materials. 2018;11:73. doi: 10.3390/ma11010073. PubMed DOI PMC

Lukáč P., Trojanová Z., Džugan J., Halmešová K. Mechanical and physical properties of Mg alloys prepared by SPD methods. COMAT 2020. Volume 1178. IOP Publishing; Bristol, UK: 2021. p. 012042. (In IOP Conference Series: Materials Science and Engineering). DOI

Máthis K., Köver M., Stráská J., Trojanová Z., Džugan J., Halmešová K. Micro-Tensile Behavior of Mg-Al-Zn Alloy Processed by Equal Channel Angular Pressing (ECAP) Materials. 2018;11:1644. doi: 10.3390/ma11091644. PubMed DOI PMC

Trojanová Z., Drozd Z., Mathis K., Kövér M., Džugan J., Lukáč P., Halmešová K. Anisotropy of Mechanical Properties of an AZ31 Alloy Prepared by SPD Method. Adv. Mater. Lett. 2019;10:887–892. doi: 10.5185/amlett.2019.0037. DOI

Drozd Z., Trojanová Z., Halmešová K., Džugan J., Lukáč P., Minárik P. Anisotropy of thermal expansion in an AZ31 Magnesium Alloy Subjected to the Accumulative Roll Bonding. Acta Phys. Pol. A. 2018;134:820–823. doi: 10.12693/APhysPolA.134.820. DOI

Mises R.V. Mechanik der festen Körper im plastisch–deformable state. Nachr. Ges. Wiss. Zu Göttingen Math.-Phys. Kl. 1913;1:582–592.

Wu J., Jin L., Dong J., Wang F., Dong S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020;42:175–179. doi: 10.1016/j.jmst.2019.10.010. DOI

Wu Y., Zhang F., Yuan X.Y., Huang H.L., Wen X.C., Wang Y.H., Zhang M.Y., Wu H.H., Liu X.J., Wang H., et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys. J. Mater. Sci. Technol. 2021;62:214–220. doi: 10.1016/j.jmst.2020.06.018. DOI

Mirza A., Chen D.L., Li D.J., Zeng X.Q. Low cycle fatigue of an extruded Mg-3Nd-0.22Zn-0.5Zr magnesium alloy. Mater. Des. 2014;64:63–73.

Murugan G., Radhukandan K., Pillai U.T.S., Pai B.C., Mahadevan K. High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load. Mater. Des. 2009;30:2636–2641. doi: 10.1016/j.matdes.2008.10.032. DOI

Eisenmeier G., Holzwarth B., Höppel H.W., Mugrabi H. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Mater. Sci. Eng. A. 2001;319:578–582. doi: 10.1016/S0921-5093(01)01105-4. DOI

Shih T.S., Liu W.S., Chen Y.J. Fatigue of as extruded AZ61A magnesium alloy. Mater. Sci. Eng. A. 2002;325:152–162. doi: 10.1016/S0921-5093(01)01411-3. DOI

Liu Z., Wang Z., Wang Y., Liu Z. Cyclic deformation behavor of high pressure die casting alloy AM50. J. Mater. Sci. Lett. 1999;18:1567–1569.

Ishihara S., Nan Z., Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy. Mater. Sci. Eng. A. 2007;468:468–470. doi: 10.1016/j.msea.2006.09.124. DOI

Horstemeyer M.F., Yang N., Gall K., McDowell D.L., Fan J., Gullett P.M. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Mater. 2004;52:1327–1336. doi: 10.1016/j.actamat.2003.11.018. DOI

Trojanová Z., Palček P., Chalupová M., Lukáč P., Hlaváčová I. High frequency cycling behaviour of three AZ magnesium alloys—Microstructural characterization. Int. J. Mater. Res. 2016;107:903–915. doi: 10.3139/146.111414. DOI

Zúberová Z., Kunz L., Lamark T.T., Estrin Y., Janeček M. Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metall. Mater. Trans. A. 2007;38A:1934–1940. doi: 10.1007/s11661-007-9109-6. DOI

Matsuzuki M., Horibe S. Analysis of fatigue damage process in magnesium alloy AZ31. Mater. Sci. Eng. A. 2009;504:169–174. doi: 10.1016/j.msea.2008.10.034. DOI

Horynová M., Zapletal J., Doležal P., Gejdoš P. Evaluation of fatigue life of AZ31 magnesium alloy fabricated by squeeze casting. Mater Des. 2013;45:253–264. doi: 10.1016/j.matdes.2012.08.079. DOI

Fintová S., Kunz L. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J. Mech. Behav. Biomed. 2015;42:219–228. doi: 10.1016/j.jmbbm.2014.11.019. PubMed DOI

Kim Y.J., Cha J.E.W., Kim H.J., Kim Y.M., Park S.H. Low-cycle fatigue properties and unified fatigue life prediction equation of hot-rolled twin-roll-cast AZ31 sheets with different thicknesses. Mater. Sci. Eng. A. 2022;833:142349. doi: 10.1016/j.msea.2021.142349. DOI

Wang Y., Culbertson D., Jiang Y. An experimental study of anisotropic fatigue behavior of rolled AZ31B magnesium alloy. Mater. Design. 2020;186:108266. doi: 10.1016/j.matdes.2019.108266. DOI

Nakai Y., Kikuchi S., Asayama K., Yoshinada H. Effects of texture and stress sequence on twinning, detwinning and fatigue crack initiation in extruded magnesium alloy AZ31. Mater. Sci. Eng. A. 2021;826:141941. doi: 10.1016/j.msea.2021.141941. DOI

Sakai Y., Saka M., Yoshida H., Asayama K., Kikuchi S. Fatigue crack initiation site and propagation paths in high-cycle fatigue of magnesium alloy AZ31. Inter. J. Fatigue. 2019;123:248–254.

Jamali A., Ma A., Lorca J. Influence of grain size and grain boundary misorientation on the fatigue crack initiation mechanisms of textured AZ31 Mg alloy. Scr. Mater. 2022;207:114304. doi: 10.1016/j.scriptamat.2021.114304. DOI

Ayer Ö. Effect of die parameters on the grain size, mechanical properties and fracture mechanism of extruded AZ31 magnesium alloys. Mater. Sci. Eng. A. 2020;793:139887. doi: 10.1016/j.msea.2020.139887. DOI

Lu H., Yin R., Zou Q., Zhang J., Liu Z., Zhang X. Effects of micro-twin lamellar structure on the mechanical properties and fracture morphology of AZ31 Mg alloy. Mater. Sci. Eng. A. 2019;735:221–230. doi: 10.1016/j.msea.2018.12.113. DOI

Trojanová Z., Drozd Z., Škraban T., Minárik P., Džugan J., Halmešová K., Németh G., Lukáč P., Chmelík F. Effect of Rotary Swaging on Microstructure and Mechanical Properties of an AZ31 Magnesium Alloy. Adv. Eng. Mater. 2019;22:1900596. doi: 10.1002/adem.201900596. DOI

Trojanová Z., Drozd Z., Halmešová K., Džugan J., Škraban T., Minárik P., Németh G., Lukáč P. Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging. Materials. 2021;14:157. doi: 10.3390/ma14010157. PubMed DOI PMC

Braszczyńska-Malik K.N. Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloy. Compd. 2009;477:870–876. doi: 10.1016/j.jallcom.2008.11.008. DOI

Ohno M., Mirkovic D., Schmid-Fetzer R. Liquidus and solidus temperatures of Mg-richMg-Al-Mn-Zn alloys. Acta Mater. 2006;54:3883–3891. doi: 10.1016/j.actamat.2006.04.022. DOI

Minárik P., Zemková M., Král R., Mhaede M., Wagner L., Hadzima B. Effect of Microstructure on the Corrosion Resistance of the AE42 Magnesium Alloy Processed by Rotary Swaging. Acta Phys. Pol. A. 2015;128:805–807. doi: 10.12693/APhysPolA.128.805. DOI

Armstrong R.W., Balasubramanian N. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements. AIP Adv. 2017;7:085010-1-5. doi: 10.1063/1.4996294. DOI

Meyers M.A., Vohringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI

Somekawa H., Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2013;561:378–385. doi: 10.1016/j.msea.2012.10.040. DOI

Máthis K., Chmelík F., Janeček M., Hadzima B., Trojanová Z., Lukáč P. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique. Acta Mater. 2006;54:5361–5366. doi: 10.1016/j.actamat.2006.06.033. DOI

Máthis K., Čapek J., Zdražilová Z., Trojanová Z. Investigation of tension-compression asymmetry of magnesium by use of the acoustic emission technique. Mater. Sci. Eng. A. 2011;528:5904–5907. doi: 10.1016/j.msea.2011.03.114. DOI

Klimanek P., Pötzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater. Sci. Eng. A. 2002;324:145–150. doi: 10.1016/S0921-5093(01)01297-7. DOI

Máthis K., Csiszar G., Čapek J., Gubicza J., Clausen B., Lukáš P., Vinogradov A., Agnew S.R. Effect of the loading mode on the evolution of the deformation mechanism in randomly textured magnesium polycrystals—Comparison of the experimental and modeling results. Inter. J. Plast. 2015;72:127–150. doi: 10.1016/j.ijplas.2015.05.009. DOI

Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys. Metall. Mater. Trans. A. 2007;36:1689–1696. doi: 10.1007/s11661-005-0032-4. DOI

Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31 B Mg sheet. Int. J. Plast. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI

Bohlen J., Dobroň P., Nascimento L., Parfenenko K., Chmelík F., Letzig D. The Effect of Reserved Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31. Acta Phys. Pol. A. 2012;122:444–449. doi: 10.12693/APhysPolA.122.444. DOI

Lamark T., Chmelík F., Estrin Y., Lukáč P. Cyclic deformation of a magnesium alloy investigated by the acoustic emission technique. J. Alloy. Compd. 2004;378:202–206. doi: 10.1016/j.jallcom.2003.10.100. DOI

Agnew S.R., Tomé C.N., Brown D.W., Holden T.M., Vogel S.C. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr. Mater. 2003;48:1003–1008. doi: 10.1016/S1359-6462(02)00591-2. DOI

Hasegawa S., Tsuchida Y., Yano H., Matsui M. Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int. J. Fatigue. 2007;29:1839–1845. doi: 10.1016/j.ijfatigue.2006.12.003. DOI

Koike J., Ohyama R., Kobayashi T., Suzuki M., Maruyama K. Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater Trans. 2003;44:445–451. doi: 10.2320/matertrans.44.445. DOI

Frost H.J., Ashby M.F. Deformation-Mechanism Maps—The Plasticity and Creep of Metals and Ceramics. Pergamon Press; Oxford, UK: 1982. p. 44.

Lukáš P., Klesnil M. Fatigue of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 1992.

Li Q. Fatigue behaviour of fine-grained magnesium under tension-tension loading at 0 °C. Int. J. Fatigue. 2021;153:106506. doi: 10.1016/j.ijfatigue.2021.106506. DOI

Smith K.N., Watson P., Topper T.H. A stress-strain function for the fatigue of metals. J. Mater. 1970;5:567–578.

Jahed H., Varvanifarahani A. Upper and lower fatigue life limits model using energy-based fatigue properties. Int J Fatigue. 2006;28:467–473. doi: 10.1016/j.ijfatigue.2005.07.039. DOI

Yin S.M., Yang F., Yang X.M., Wu S.D., Li S.X., Li G.Y. The role of twinning–detwinning on fatigue fracture morphology of Mg–3%Al–1%Zn alloy. Mater. Sci. Eng. A. 2008;494:397–400. doi: 10.1016/j.msea.2008.04.056. DOI

Li L., Jie Yang J., Yang Z., Sun Q., Li Tan L., Zeng Q., Zhu M. Towards revealing the relationship between deformation twin and fatigue crack initiation in a rolled magnesium alloy. Mater. Charact. 2021;179:111362. doi: 10.1016/j.matchar.2021.111362. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...