Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33396375
PubMed Central
PMC7818120
DOI
10.3390/ma14010157
PII: ma14010157
Knihovny.cz E-zdroje
- Klíčová slova
- dislocation density, grain size, magnesium alloy AZ31, residual stresses, strain hardening, twinning,
- Publikační typ
- časopisecké články MeSH
An extruded magnesium AZ31 magnesium alloy was processed by rotary swaging (RSW) and then deformed by tension and compression at room temperature. The work-hardening behaviour of 1-5 times swaged samples was analysed using Kocks-Mecking plots. Accumulation of dislocations on dislocation obstacles and twin boundaries is the deciding factor for the strain hardening. Profuse twinning in compression seems to be the reason for the higher hardening observed during compression. The main softening mechanism is apparently the cross-slip between the pyramidal planes of the second and first order. A massive twinning observed at the deformation beginning influences the Hall-Petch parameters.
COMTES FHT a s Průmyslová 995 33441 Dobřany Czech Republic
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 12116 Praha 2 Czech Republic
Zobrazit více v PubMed
Kocks U.F., Mecking H. In: Dislocation Modelling of Physical Systems. Ashby M.F., Hartley C.S., Bullough R., Hirth J.P., editors. Pergamon Press; Oxford, UK: 1981. pp. 197–211. DOI
Lukáč P., Balík J. Kinetics of Plastic Deformation. Key Eng. Mater. 1994;97–98:307–322. doi: 10.4028/www.scientific.net/KEM.97-98.307. DOI
Král R., Lukáč P. Mechanisms of plastic deformation in Al-Mg and Al-Zn-Mg alloys. Acta Univ. Carol. Math. Phys. 1998;39:49–90.
Máthis K., Trojanová Z., Lukáč P. Hardening and softening in deformed magnesium alloys. Mater. Sci. Eng. A. 2002;324:141–144. doi: 10.1016/S0921-5093(01)01296-5. DOI
Balik J., Dobroň P., Chmelík F., Kužel R., Dozdenko D., Bohlen J., Letzig D., Lukáč P. Modelling of work hardening in magnesium alloy sheets. Int. J. Plast. 2016;76:166–185. doi: 10.1016/j.ijplas.2015.08.001. DOI
Trojanová Z., Lukáč P. Physical aspects of plastic deformation in Mg–Al alloys with Sr and Ca. Inter. J. Mater. Res. 2009;100:270–276. doi: 10.3139/146.110054. DOI
Trojanová Z., Lukáč P., Dlouhý A. Hardening and softening in Zr-Sn polycrystals. Mater. Sci. Eng. A. 1993;164:246–251. doi: 10.1016/0921-5093(93)90671-Z. DOI
Máthis K., Trojanová Z., Lukáč P., Cáceres C.H., Ledvai J. Modeling of hardening and softening processes in Mg alloys. J. Alloys Compd. 2004;378:176–179. doi: 10.1016/j.jallcom.2003.10.098. DOI
Cáceres C.H., Lukáč P., Blake A. Strain hardening due to {10 12} twinning in pure magnesium. Phil. Mag. 2008;88:991–1003. doi: 10.1080/14786430701881211. DOI
Oppendal A.L., El Kadiri H., Tomé C.N., Kaschner G.C., Vogel S.C., Baird J.C., Horstenmeyer M.F. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Inter. J. Plasticity. 2012;30–31:41–61. doi: 10.1016/j.ijplas.2011.09.002. DOI
Cáceres C.H., Blake A.H. On the strain hardening behaviour of magnesium at room temperature. Mater. Sci. Eng. A. 2007;462:193–196. doi: 10.1016/j.msea.2005.12.113. DOI
Zhang D., Zhang D., Bu F., Li X., Li B., Yan T., Guan K., Yang Q., Liu X., Meng J. Excellent ductility and strong work hardening effect of as cast Mg-Zn-Zr-Yb alloy at room temperature. J. Alloys Compd. 2017;728:404–412. doi: 10.1016/j.jallcom.2017.09.016. DOI
Guo L., Chen Z., Gao L. Effect of grain size, texture and twinning on mechanical properties and work hardening behavior of AZ31magnesium alloy. Mater. Sci. Eng. A. 2011;528:8537–8545. doi: 10.1016/j.msea.2011.07.076. DOI
Del Valle J.A., Carreño F., Ruano O.A. Influence of texture and grain size on work hardening and ductility in magnesium -based alloys processed by ECAP and rolling. Acta Mater. 2006;54:4247–4259. doi: 10.1016/j.actamat.2006.05.018. DOI
Koike J., Kobayashi T., Mukai T., Watanabe H., Suzuki M., Maruyama K., Hogashi K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine grained AZ31 B magnesium alloys. Acta Mater. 2003;51:2055–2065. doi: 10.1016/S1359-6454(03)00005-3. DOI
Liao H., Kim J., Liu T., Tang A., She J., Peng P., Pan F. Effect of Mn addition on the microstructure, mechanical properties and work-hardening of Mg-1Mn alloy. Mater. Sci. Eng. A. 2019;754:778–785. doi: 10.1016/j.msea.2019.02.021. DOI
Knezevic M., Levinson A., Harris R., Mishra R.K., Doherty R.D., Kalidindi S. Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 2010;58:6230–6242. doi: 10.1016/j.actamat.2010.07.041. DOI
Kula A., Lia X., Mishra R.K., Niewczas M. Flow stress and work hardening of Mg-Y alloys. Int. J. Plasticity. 2017;92:96–121. doi: 10.1016/j.ijplas.2017.01.012. DOI
Shou H., Zheng J., Zhang Y., Long D., Rao J., Liu Q. Quasi-in-situ analysis of dependency of deformation mechanism and work-hardening behavior on texture in Mg-2Zn-0.1Ca alloy. J. Alloy. Compd. 2019;784:1187–1197. doi: 10.1016/j.jallcom.2019.01.159. DOI
Zhao J., Jiang B., Yuan Y., Tang A., Sheng H., Yang T., Huang G., Zhang D., Pan F. Influence of Zn addition on the microstructure, tensile properties and work-hardening behavior of Mg-1Gd alloy. Mater. Sci. Eng. A. 2020;772:138779. doi: 10.1016/j.msea.2019.138779. DOI
Figueiredo R.B., Száraz Z., Trojanová Z., Lukáč P., Langdon T.G. Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing. Scripta Mater. 2010;63:504–507. doi: 10.1016/j.scriptamat.2010.05.016. DOI
Trojanová Z., Máthis K., Lukáč P., Janeček M., Farkas G. Plastic Properties of a Mg-Al-Ca Alloy Reinforced with Short Saffil Fibers. Metall. Mater. Trans. A. 2014;45A:29–35. doi: 10.1007/s11661-013-2120-1. DOI
Vinogradov A., Agletdinov E., Yasnikov I.S., Máthis K., Estrin Y. A phenomenological model of twinning-mediated strain hardening. Mater. Sci. Eng. 2020;A780:139194. doi: 10.1016/j.msea.2020.139194. DOI
Trojanová Z., Drozd Z., Škraban T., Minárik P., Džugan J., Halmešová K., Németh G., Lukáč P., Chmelík F. Effect of Rotary Swaging on Microstructure and Mechanical Properties of an AZ31 Magnesium Alloy. Adv. Eng. Mater. 2020:1900596. doi: 10.1002/adem.201900596. DOI
Heiple C.R., Carpenter S.H. In: Acoustic Emission. Matthews J.R., editor. Gordon and Breach Science Publishers; New York, NY, USA: 1983. DOI
Chmelík F., Trojanová Z., Převorovský Z., Lukáč P. The Portevin-Le Chatelier effect in Al-2.92%Mg-0.38%Mn and linear location of acoustic emission. Mater. Sci. Eng. A. 1993;164:260–265. doi: 10.1016/0921-5093(93)90674-4. DOI
Boiko V.S., Garber H.I., Krivenko L.F. Acoustic emission during annihilation of dislocation pile ups. Fizika Tverd. Tela. 1974;16:1233–1235. (In Russian)
Trojanová Z., Száraz Z., Chmelík F., Lukáč P. Acoustic emission from deformed magnesium alloy-based composites. Mater. Sci. Eng. A. 2011;528:2479–2483. doi: 10.1016/j.msea.2010.11.058. DOI
Máthis K., Čapek J., Zdražilová Z., Trojanová Z. Investigation of tension-compression asymmetry of magnesium by use of the acoustic emission technique. Mater. Sci. Eng. A. 2011;528:5904–5907. doi: 10.1016/j.msea.2011.03.114. DOI
Kocks U.F., Mecking H. Physics and phenomenology of strain hardening: The FCC case. Progr. Mater. Sci. 2003;48:171–273. doi: 10.1016/S0079-6425(02)00003-8. DOI
Máthis K., Csiszar G., Čapek J., Gubicza J., Clausen B., Lukáš P., Vinogradov A., Agnew S.R. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results. Inter. J. Plast. 2015;72:127–150. doi: 10.1016/j.ijplas.2015.05.009. DOI
Barnett M.R. Twinning and the ductility of magnesium alloys part I: Tension twins. Mater. Sci. Eng. A. 2007;464:1–7. doi: 10.1016/j.msea.2006.12.037. DOI
Barnett M.R. Twinning and the ductility of magnesium alloys part II. “contraction” twins. Mater. Sci. Eng. A. 2007;464:8–16. doi: 10.1016/j.msea.2007.02.109. DOI
Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys. Metall. Mater. Trans. A. 2007;36:1689–1696. doi: 10.1007/s11661-005-0032-4. DOI
Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31 B Mg sheet. Int. J. Plasticity. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI
Lavrentev F.F. The type of dislocation interaction as the factor determining work hardening. Mater. Sci. Eng. 1980;46:191–208. doi: 10.1016/0025-5416(80)90175-5. DOI
Molodov K.D., Al-Samman T., Molodov D.A. Profuse slip transmission across twin boundaries in magnesium. Acta Mater. 2017;124:397–409. doi: 10.1016/j.actamat.2016.11.022. DOI
Molodov K.D., Al-Samman T., Molodov T.D., Korte-Kerz S. On the twinning shear of {1012} twins in magnesium: Experimental determination and formal description. Acta Mater. 2017;134:267–273. doi: 10.1016/j.actamat.2017.05.041. DOI
Yang H., Jiang B., He J., Jiang Z., Yang H., Jiang B., He J., Zhang Z., Pang F. DOI
Buey D., Ghazisaeidi M. Atomistic simulation of <c + a> screw dislocation cross slip in Mg. Scripta Mater. 2016;117:51–54. doi: 10.1016/j.scriptamat.2016.02.001. DOI
Ando S., Tonda H. Non-Basal Slip in Magnesium-Lithium Alloy Single Crystals. Mater. Trans. JIM. 2000;41:1188–1191. doi: 10.2320/matertrans1989.41.1188. DOI
Tonda H., Ando S. Effect of temperature and shear direction on yield stress by DOI
Ahmad R., Wu Z., Curtin W.A. Analysis of double cross slip of pyramidalI <c + a> dislocations and implications for ductility in Mg alloys. Acta Mater. 2020;183:228–241. doi: 10.1016/j.actamat.2019.10.053. DOI
Armstrong R.W., Balasubramanian N. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements. AIP Adv. 2017:7. doi: 10.1063/1.4996294. DOI
Mann G., Griffith J.R., Cácers C.H. Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys. J. Alloys Compd. 2004;178:188–191. doi: 10.1016/j.jallcom.2003.12.052. DOI
Yu H., Xin Y., Wang M., Liu Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018;34:248–256. doi: 10.1016/j.jmst.2017.07.022. DOI
Cáceres C.H., Lukáč P. Strain hardening behaviour and the Taylor factor of pure magnesium. Phil. Mag. 2008;88:977–989. doi: 10.1080/14786430801968611. DOI
Somekawa H., Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater. Sci. Eng. A. 2013;561:378–385. doi: 10.1016/j.msea.2012.10.040. DOI
Meyers M.A., Vohringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI
Fatigue in an AZ31 Alloy Subjected to Rotary Swaging