Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging

. 2020 Dec 31 ; 14 (1) : . [epub] 20201231

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33396375

An extruded magnesium AZ31 magnesium alloy was processed by rotary swaging (RSW) and then deformed by tension and compression at room temperature. The work-hardening behaviour of 1-5 times swaged samples was analysed using Kocks-Mecking plots. Accumulation of dislocations on dislocation obstacles and twin boundaries is the deciding factor for the strain hardening. Profuse twinning in compression seems to be the reason for the higher hardening observed during compression. The main softening mechanism is apparently the cross-slip between the pyramidal planes of the second and first order. A massive twinning observed at the deformation beginning influences the Hall-Petch parameters.

Zobrazit více v PubMed

Kocks U.F., Mecking H. In: Dislocation Modelling of Physical Systems. Ashby M.F., Hartley C.S., Bullough R., Hirth J.P., editors. Pergamon Press; Oxford, UK: 1981. pp. 197–211. DOI

Lukáč P., Balík J. Kinetics of Plastic Deformation. Key Eng. Mater. 1994;97–98:307–322. doi: 10.4028/www.scientific.net/KEM.97-98.307. DOI

Král R., Lukáč P. Mechanisms of plastic deformation in Al-Mg and Al-Zn-Mg alloys. Acta Univ. Carol. Math. Phys. 1998;39:49–90.

Máthis K., Trojanová Z., Lukáč P. Hardening and softening in deformed magnesium alloys. Mater. Sci. Eng. A. 2002;324:141–144. doi: 10.1016/S0921-5093(01)01296-5. DOI

Balik J., Dobroň P., Chmelík F., Kužel R., Dozdenko D., Bohlen J., Letzig D., Lukáč P. Modelling of work hardening in magnesium alloy sheets. Int. J. Plast. 2016;76:166–185. doi: 10.1016/j.ijplas.2015.08.001. DOI

Trojanová Z., Lukáč P. Physical aspects of plastic deformation in Mg–Al alloys with Sr and Ca. Inter. J. Mater. Res. 2009;100:270–276. doi: 10.3139/146.110054. DOI

Trojanová Z., Lukáč P., Dlouhý A. Hardening and softening in Zr-Sn polycrystals. Mater. Sci. Eng. A. 1993;164:246–251. doi: 10.1016/0921-5093(93)90671-Z. DOI

Máthis K., Trojanová Z., Lukáč P., Cáceres C.H., Ledvai J. Modeling of hardening and softening processes in Mg alloys. J. Alloys Compd. 2004;378:176–179. doi: 10.1016/j.jallcom.2003.10.098. DOI

Cáceres C.H., Lukáč P., Blake A. Strain hardening due to {10 12} twinning in pure magnesium. Phil. Mag. 2008;88:991–1003. doi: 10.1080/14786430701881211. DOI

Oppendal A.L., El Kadiri H., Tomé C.N., Kaschner G.C., Vogel S.C., Baird J.C., Horstenmeyer M.F. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Inter. J. Plasticity. 2012;30–31:41–61. doi: 10.1016/j.ijplas.2011.09.002. DOI

Cáceres C.H., Blake A.H. On the strain hardening behaviour of magnesium at room temperature. Mater. Sci. Eng. A. 2007;462:193–196. doi: 10.1016/j.msea.2005.12.113. DOI

Zhang D., Zhang D., Bu F., Li X., Li B., Yan T., Guan K., Yang Q., Liu X., Meng J. Excellent ductility and strong work hardening effect of as cast Mg-Zn-Zr-Yb alloy at room temperature. J. Alloys Compd. 2017;728:404–412. doi: 10.1016/j.jallcom.2017.09.016. DOI

Guo L., Chen Z., Gao L. Effect of grain size, texture and twinning on mechanical properties and work hardening behavior of AZ31magnesium alloy. Mater. Sci. Eng. A. 2011;528:8537–8545. doi: 10.1016/j.msea.2011.07.076. DOI

Del Valle J.A., Carreño F., Ruano O.A. Influence of texture and grain size on work hardening and ductility in magnesium -based alloys processed by ECAP and rolling. Acta Mater. 2006;54:4247–4259. doi: 10.1016/j.actamat.2006.05.018. DOI

Koike J., Kobayashi T., Mukai T., Watanabe H., Suzuki M., Maruyama K., Hogashi K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine grained AZ31 B magnesium alloys. Acta Mater. 2003;51:2055–2065. doi: 10.1016/S1359-6454(03)00005-3. DOI

Liao H., Kim J., Liu T., Tang A., She J., Peng P., Pan F. Effect of Mn addition on the microstructure, mechanical properties and work-hardening of Mg-1Mn alloy. Mater. Sci. Eng. A. 2019;754:778–785. doi: 10.1016/j.msea.2019.02.021. DOI

Knezevic M., Levinson A., Harris R., Mishra R.K., Doherty R.D., Kalidindi S. Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 2010;58:6230–6242. doi: 10.1016/j.actamat.2010.07.041. DOI

Kula A., Lia X., Mishra R.K., Niewczas M. Flow stress and work hardening of Mg-Y alloys. Int. J. Plasticity. 2017;92:96–121. doi: 10.1016/j.ijplas.2017.01.012. DOI

Shou H., Zheng J., Zhang Y., Long D., Rao J., Liu Q. Quasi-in-situ analysis of dependency of deformation mechanism and work-hardening behavior on texture in Mg-2Zn-0.1Ca alloy. J. Alloy. Compd. 2019;784:1187–1197. doi: 10.1016/j.jallcom.2019.01.159. DOI

Zhao J., Jiang B., Yuan Y., Tang A., Sheng H., Yang T., Huang G., Zhang D., Pan F. Influence of Zn addition on the microstructure, tensile properties and work-hardening behavior of Mg-1Gd alloy. Mater. Sci. Eng. A. 2020;772:138779. doi: 10.1016/j.msea.2019.138779. DOI

Figueiredo R.B., Száraz Z., Trojanová Z., Lukáč P., Langdon T.G. Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing. Scripta Mater. 2010;63:504–507. doi: 10.1016/j.scriptamat.2010.05.016. DOI

Trojanová Z., Máthis K., Lukáč P., Janeček M., Farkas G. Plastic Properties of a Mg-Al-Ca Alloy Reinforced with Short Saffil Fibers. Metall. Mater. Trans. A. 2014;45A:29–35. doi: 10.1007/s11661-013-2120-1. DOI

Vinogradov A., Agletdinov E., Yasnikov I.S., Máthis K., Estrin Y. A phenomenological model of twinning-mediated strain hardening. Mater. Sci. Eng. 2020;A780:139194. doi: 10.1016/j.msea.2020.139194. DOI

Trojanová Z., Drozd Z., Škraban T., Minárik P., Džugan J., Halmešová K., Németh G., Lukáč P., Chmelík F. Effect of Rotary Swaging on Microstructure and Mechanical Properties of an AZ31 Magnesium Alloy. Adv. Eng. Mater. 2020:1900596. doi: 10.1002/adem.201900596. DOI

Heiple C.R., Carpenter S.H. In: Acoustic Emission. Matthews J.R., editor. Gordon and Breach Science Publishers; New York, NY, USA: 1983. DOI

Chmelík F., Trojanová Z., Převorovský Z., Lukáč P. The Portevin-Le Chatelier effect in Al-2.92%Mg-0.38%Mn and linear location of acoustic emission. Mater. Sci. Eng. A. 1993;164:260–265. doi: 10.1016/0921-5093(93)90674-4. DOI

Boiko V.S., Garber H.I., Krivenko L.F. Acoustic emission during annihilation of dislocation pile ups. Fizika Tverd. Tela. 1974;16:1233–1235. (In Russian)

Trojanová Z., Száraz Z., Chmelík F., Lukáč P. Acoustic emission from deformed magnesium alloy-based composites. Mater. Sci. Eng. A. 2011;528:2479–2483. doi: 10.1016/j.msea.2010.11.058. DOI

Máthis K., Čapek J., Zdražilová Z., Trojanová Z. Investigation of tension-compression asymmetry of magnesium by use of the acoustic emission technique. Mater. Sci. Eng. A. 2011;528:5904–5907. doi: 10.1016/j.msea.2011.03.114. DOI

Kocks U.F., Mecking H. Physics and phenomenology of strain hardening: The FCC case. Progr. Mater. Sci. 2003;48:171–273. doi: 10.1016/S0079-6425(02)00003-8. DOI

Máthis K., Csiszar G., Čapek J., Gubicza J., Clausen B., Lukáš P., Vinogradov A., Agnew S.R. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results. Inter. J. Plast. 2015;72:127–150. doi: 10.1016/j.ijplas.2015.05.009. DOI

Barnett M.R. Twinning and the ductility of magnesium alloys part I: Tension twins. Mater. Sci. Eng. A. 2007;464:1–7. doi: 10.1016/j.msea.2006.12.037. DOI

Barnett M.R. Twinning and the ductility of magnesium alloys part II. “contraction” twins. Mater. Sci. Eng. A. 2007;464:8–16. doi: 10.1016/j.msea.2007.02.109. DOI

Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys. Metall. Mater. Trans. A. 2007;36:1689–1696. doi: 10.1007/s11661-005-0032-4. DOI

Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31 B Mg sheet. Int. J. Plasticity. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI

Lavrentev F.F. The type of dislocation interaction as the factor determining work hardening. Mater. Sci. Eng. 1980;46:191–208. doi: 10.1016/0025-5416(80)90175-5. DOI

Molodov K.D., Al-Samman T., Molodov D.A. Profuse slip transmission across twin boundaries in magnesium. Acta Mater. 2017;124:397–409. doi: 10.1016/j.actamat.2016.11.022. DOI

Molodov K.D., Al-Samman T., Molodov T.D., Korte-Kerz S. On the twinning shear of {1012} twins in magnesium: Experimental determination and formal description. Acta Mater. 2017;134:267–273. doi: 10.1016/j.actamat.2017.05.041. DOI

Yang H., Jiang B., He J., Jiang Z., Yang H., Jiang B., He J., Zhang Z., Pang F. DOI

Buey D., Ghazisaeidi M. Atomistic simulation of <c + a> screw dislocation cross slip in Mg. Scripta Mater. 2016;117:51–54. doi: 10.1016/j.scriptamat.2016.02.001. DOI

Ando S., Tonda H. Non-Basal Slip in Magnesium-Lithium Alloy Single Crystals. Mater. Trans. JIM. 2000;41:1188–1191. doi: 10.2320/matertrans1989.41.1188. DOI

Tonda H., Ando S. Effect of temperature and shear direction on yield stress by DOI

Ahmad R., Wu Z., Curtin W.A. Analysis of double cross slip of pyramidalI <c + a> dislocations and implications for ductility in Mg alloys. Acta Mater. 2020;183:228–241. doi: 10.1016/j.actamat.2019.10.053. DOI

Armstrong R.W., Balasubramanian N. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements. AIP Adv. 2017:7. doi: 10.1063/1.4996294. DOI

Mann G., Griffith J.R., Cácers C.H. Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys. J. Alloys Compd. 2004;178:188–191. doi: 10.1016/j.jallcom.2003.12.052. DOI

Yu H., Xin Y., Wang M., Liu Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018;34:248–256. doi: 10.1016/j.jmst.2017.07.022. DOI

Cáceres C.H., Lukáč P. Strain hardening behaviour and the Taylor factor of pure magnesium. Phil. Mag. 2008;88:977–989. doi: 10.1080/14786430801968611. DOI

Somekawa H., Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater. Sci. Eng. A. 2013;561:378–385. doi: 10.1016/j.msea.2012.10.040. DOI

Meyers M.A., Vohringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...