Revealing the Microstructural Aspects of the Corrosion Dynamics in Rapidly Solidified Mg-Zn-Y Alloys Using the Acoustic Emission Technique

. 2021 Dec 17 ; 14 (24) : . [epub] 20211217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947421

Grantová podpora
20-07384Y Czech Science Foundation
JP21H01673 Japan Society for the Promotion of Science
JP18H05476 Japan Society for the Promotion of Science
JPMJCR2094 Japan Science and Technology Agency

This work was focused on revealing the relation between the microstructure and corrosion dynamics in dilute Mg97.94Zn0.56Y1.5 (at.%) alloys prepared by the consolidation of rapidly solidified (RS) ribbons. The dynamics of the corrosion were followed by common electrochemical methods and the acoustic emission (AE) technique. AE monitoring offers instantaneous feedback on changes in the dynamics and mode of the corrosion. In contrast, the electrochemical measurements were performed on the specimens, which had already been immersed in the solution for a pre-defined time. Thus, some short-term corrosion processes could remain undiscovered. Obtained results were completed by scanning electron microscopy, including analysis of a cross-section of the corrosion layer. It was shown that the internal strain distribution, the grain morphology, and the distribution of the secondary phases play a significant role in the corrosion. The alloys are characterized by a complex microstructure with elongated worked and dynamically recrystallized α-Mg grains with an average grain size of 900 nm. Moreover, the Zn- and Y-rich stacking faults (SFs) were dispersed in the grain interior. In the alloy consolidated at a lower extrusion speed, the homogeneous internal strain distribution led to uniform corrosion with a rate of 2 mm/year and a low hydrogen release. The consolidation at a higher extrusion speed resulted in the formation of uneven distribution of internal strains with remaining high strain levels in non-recrystallized grains, leading to inhomogeneous growth and breakdown of the corrosion layers. Therefore, homogeneity of the internal strain distribution is of key importance for the uniform formation of a protective layer.

Zobrazit více v PubMed

Adekanmbi I., Mosher C.Z., Lu H.H., Riehle M., Kubba H., Tanner K.E. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Mater. Sci. Eng. C. 2017;77:1135–1144. doi: 10.1016/j.msec.2017.03.216. PubMed DOI

Brar H.S., Platt M.O., Sarntinoranont M., Martin P.I., Manuel M.V. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM. 2009;61:31–34. doi: 10.1007/s11837-009-0129-0. DOI

Atrens A., Shi Z., Mehreen S.U., Johnston S., Song G.-L., Chen X., Pan F. Review of Mg alloy corrosion rates. J. Magnes. Alloy. 2020;8:989–998. doi: 10.1016/j.jma.2020.08.002. DOI

Inoue A., Kawamura Y., Matsushita M., Hayashi K., Koike J. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J. Mater. Res. 2001;16:1894–1900. doi: 10.1557/JMR.2001.0260. DOI

Kawamura Y., Hayashi K., Inoue A., Masumoto T. Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600 MPa. Mater. Trans. 2001;42:1172–1176. doi: 10.2320/matertrans.42.1172. DOI

Kawamura Y., Kasahara T., Izumi S., Yamasaki M. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure. Scr. Mater. 2006;55:453–456. doi: 10.1016/j.scriptamat.2006.05.011. DOI

Yamasaki M., Hashimoto K., Hagihara K., Kawamura Y. Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater. 2011;59:3646–3658. doi: 10.1016/j.actamat.2011.02.038. DOI

Abe E., Ono A., Itoi T., Yamasaki M., Kawamura Y. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg–Zn–Y alloy. Philos. Mag. Lett. 2011;91:690–696. doi: 10.1080/09500839.2011.609149. DOI

Egusa D., Abe E. The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges. Acta Mater. 2012;60:166–178. doi: 10.1016/j.actamat.2011.09.030. DOI

Garces G., Perez P., Cabeza S., Lin H.K., Kim S., Gan W., Adeva P. Reverse tension/compression asymmetry of a Mg–Y–Zn alloys containing LPSO phases. Mater. Sci. Eng. A. 2015;647:287–293. doi: 10.1016/j.msea.2015.09.003. DOI

Garces G., Muñoz-Morris M.A., Morris D.G., Jimenez J.A., Perez P., Adeva P. The role of extrusion texture on strength and its anisotropy in a Mg-base alloy composed of the Long-Period-Structural-Order phase. Intermetallics. 2014;55:167–176. doi: 10.1016/j.intermet.2014.07.015. DOI

Garcés G., Máthis K., Medina J., Horváth K., Drozdenko D., Oñorbe E., Dobroň P., Pérez P., Klaus M., Adeva P. Combination of in-situ diffraction experiments and acoustic emission testing to understand the compression behavior of Mg-Y-Zn alloys containing LPSO phase under different loading conditions. Int. J. Plast. 2018;106:107–128. doi: 10.1016/j.ijplas.2018.03.004. DOI

Hagihara K., Kinoshita A., Sugino Y., Yamasaki M., Kawamura Y., Yasuda H.Y., Umakoshi Y. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010;58:6282–6293. doi: 10.1016/j.actamat.2010.07.050. DOI

Horváth K., Drozdenko D., Daniš S., Garcés G., Máthis K., Kim S., Dobroň P. Characterization of Microstructure and Mechanical Properties of Mg–Y–Zn Alloys with Respect to Different Content of LPSO Phase. Adv. Eng. Mater. 2018;20:1700396. doi: 10.1002/adem.201700396. DOI

Horváth K., Drozdenko D., Garcés G., Dobroň P., Máthis K. Characterization of the acoustic emission response and mechanical properties of Mg alloy with LPSO phase. Mater. Sci. Forum. 2017;879:762–766. doi: 10.4028/www.scientific.net/MSF.879.762. DOI

Hagihara K., Yokotani N., Umakoshi Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics. 2010;18:267–276. doi: 10.1016/j.intermet.2009.07.014. DOI

Oñorbe E., Garcés G., Pérez P., Adeva P. Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X –Zn X alloys. J. Mater. Sci. 2012;47:1085–1093. doi: 10.1007/s10853-011-5899-4. DOI

Yamasaki M., Shi Z., Atrens A., Furukawa A., Kawamura Y. Influence of crystallographic orientation and Al alloying on the corrosion behavior of extruded a-Mg/LPSO two-phase Mg-Zn-Y alloys with multimodal microstructure. Corros. Sci. 2021 under review.

Makar G.L., Kruger J. Corrosion of magnesium. Int. Mater. Rev. 1993;38:138–153. doi: 10.1179/imr.1993.38.3.138. DOI

Hanawalt J.D., Nelson C.E., Peloubet J.A. Corrosion studies of magnesium and its alloys. Trans. AIME. 1942;147:273–299.

Krajňák T., Minárik P., Stráská J., Gubicza J., Máthis K., Janeček M. Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. J. Mater. Sci. 2019;54:3469–3484. doi: 10.1007/s10853-018-3033-6. DOI

Krajňák T., Minárik P., Stráský J., Máthis K., Janeček M. Mechanical properties of ultrafine-grained AX41 magnesium alloy at room and elevated temperatures. Mater. Sci. Eng. A. 2018;731:438–445. doi: 10.1016/j.msea.2017.10.076. DOI

Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI

Minárik P., Král R., Čížek J., Chmelík F. Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 2016;107:83–95. doi: 10.1016/j.actamat.2015.12.050. DOI

Minárik P., Veselý J., Král R., Bohlen J., Kubásek J., Janeček M., Stráská J. Exceptional mechanical properties of ultra-fine grain Mg-4Y-3RE alloy processed by ECAP. Mater. Sci. Eng. A. 2017;708:193–198. doi: 10.1016/j.msea.2017.09.106. DOI

Okouchi H., Seki Y., Sekigawa T., Hira H., Kawamura Y. Nanocrystalline LPSO Mg-Zn-Y-Al Alloys with High Mechanical Strength and Corrosion Resistance. Mater. Sci. Forum. 2010;638:1476–1481. doi: 10.4028/www.scientific.net/MSF.638-642.1476. DOI

Garces G., Cabeza S., Barea R., Pérez P., Adeva P. Maintaining High Strength in Mg-LPSO Alloys with Low Yttrium Content Using Severe Plastic Deformation. Materials. 2018;11:733. doi: 10.3390/ma11050733. PubMed DOI PMC

Suzawa K., Inoue S.-i., Yamasaki M., Kawamura Y., Miyanaga M., Yoshida K., Kawabe N. Superplasticity in a Chip-Consolidated Mg97Zn1Y2 Alloy with LPSO Phase. Magnes. Technol. 2018;1:245–249.

Yang Y., Chen X., Nie J., Wei K., Mao Q., Lu F., Zhao Y. Achieving ultra-strong Magnesium–lithium alloys by low-strain rotary swaging. Mater. Res. Lett. 2021;9:255–262. doi: 10.1080/21663831.2021.1891150. DOI

Trojanová Z., Drozd Z., Halmešová K., Džugan J., Škraban T., Minárik P., Németh G., Lukáč P. Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging. Materials. 2021;14:157. doi: 10.3390/ma14010157. PubMed DOI PMC

Yamasaki M., Izumi S., Kawamura Y. Development of High Strength and Highly Corrosion-Resistant Bulk Nanocrystalline Mg-Zn-Y Alloys with Long Period Stacking Ordered Phase. ECS Trans. 2009;16:81–88. doi: 10.1149/1.3091907. DOI

Yamasaki M., Izumi S., Kawamura Y., Habazaki H. Corrosion and passivation behavior of Mg–Zn–Y–Al alloys prepared by cooling rate-controlled solidification. Appl. Surf. Sci. 2011;257:8258–8267. doi: 10.1016/j.apsusc.2011.01.046. DOI

Yamasaki M., Hayashi N., Izumi S., Kawamura Y. Corrosion behavior of rapidly solidified Mg–Zn–rare earth element alloys in NaCl solution. Corros. Sci. 2007;49:255–262. doi: 10.1016/j.corsci.2006.05.017. DOI

Jono Y., Yamasaki M., Kawamura Y. Effect of LPSO Phase-Stimulated Texture Evolution on Creep Resistance of Extruded Mg–Zn–Gd Alloys. Mater. Trans. 2013;54:703–712. doi: 10.2320/matertrans.MI201218. DOI

Zhang L., Zhang J., Xu C., Jing Y., Zhuang J., Wu R., Zhang M. Formation of stacking faults for improving the performance of biodegradable Mg–Ho–Zn alloy. Mater. Lett. 2014;133:158–162. doi: 10.1016/j.matlet.2014.06.171. DOI

Jiao Y., Zhang J., Kong P., Zhang Z., Jing Y., Zhuang J., Wang W., Zhang L., Xu C., Wu R., et al. Enhancing the performance of Mg-based implant materials by introducing basal plane stacking faults. J. Mater. Chem. B. 2015;3:7386–7400. doi: 10.1039/C5TB01060H. PubMed DOI

Zhang J., Xu C., Jing Y., Lv S., Liu S., Fang D., Zhuang J., Zhang M., Wu R. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults. Sci. Rep. 2015;5:13933. doi: 10.1038/srep13933. PubMed DOI PMC

Zhang X., Kairy S.K., Dai J., Birbilis N. A Closer Look at the Role of Nanometer Scale Solute-Rich Stacking Faults in the Localized Corrosion of a Magnesium Alloy GZ31K. J. Electrochem. Soc. 2018;165:C310–C316. doi: 10.1149/2.0391807jes. DOI

Izumi S., Yamasaki M., Kawamura Y. Relation between corrosion behavior and microstructure of Mg–Zn–Y alloys prepared by rapid solidification at various cooling rates. Corros. Sci. 2009;51:395–402. doi: 10.1016/j.corsci.2008.11.003. DOI

Izumi S., Yamasaki M., Kawamura Y. Influence of cooling rate on corrosion resistance of rapidly solidified Mg-Zn-Y alloys with a long period stacking ordered phase. ECS Trans. 2009;16:65–72. doi: 10.1149/1.3091905. DOI

Nie Y., Dai J., Li X., Zhang X. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures. J. Magnes. Alloys. 2021;9:1123–1146. doi: 10.1016/j.jma.2020.09.021. DOI

Zhang X., Dai J., Dong Q., Ba Z., Wu Y. Corrosion behavior and mechanical degradation of as-extruded Mg–Gd–Zn–Zr alloys for orthopedic application. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2020;108:698–708. doi: 10.1002/jbm.b.34424. PubMed DOI

Drozdenko D., Yamasaki M., Máthis K., Dobroň P., Lukáč P., Kizu N., Inoue S.-I., Kawamura Y. Optimization of mechanical properties of dilute Mg-Zn-Y alloys prepared by rapid solidification. Mater. Des. 2019;181:107984. doi: 10.1016/j.matdes.2019.107984. DOI

Knapek M., Minárik P., Čapek J., Král R., Kubásek J., Chmelík F. Corrosion of pure magnesium and a WE43 magnesium alloy studied by advanced acoustic emission analysis. Corros. Sci. 2018;145:10–15. doi: 10.1016/j.corsci.2018.09.006. DOI

Yuyama S. In: Fundamental Aspects of Acoustic Emission Applications to the Problems Caused by Corrosion. Moran G.C., Labine P., editors. ASTM International; West Conshohocken, PA, USA: 1986. pp. 43–74.

Zhang Z., Zhao Z., Bai P., Li X., Liu B., Tan J., Wu X. In-situ monitoring of pitting corrosion of AZ31 magnesium alloy by combining electrochemical noise and acoustic emission techniques. J. Alloy. Compd. 2021;878:160334. doi: 10.1016/j.jallcom.2021.160334. DOI

Kim H.-Y., Kim J.-Y., Lee S.-M., Byeon J.-W. Evaluation of Pitting Corrosion Mechanism of AZ31 Magnesium Alloy by Monitoring Acoustic Emission. Mat. Trans. 2017;58:123–126. doi: 10.2320/matertrans.M2016302. DOI

Minarik P., Landa M., Lesna I.K., Zemkova M., Jablonska E., Hadzima B., Janecek M., Kral R. Interrelation of Microstructure and Corrosion Resistance in Biodegradable Magnesium Alloys with Aluminum, Lithium and Rare Earth Additions. Acta Phys. Pol. A. 2015;128:491–496. doi: 10.12693/APhysPolA.128.491. DOI

Hirano M., Yamasaki M., Hagihara K., Higashida K., Kawamura Y. Effect of Extrusion Parameters on Mechanical Properties of Mg97Zn1Y2 Alloys at Room and Elevated Temperatures. Mater. Trans. 2010;51:1640–1647. doi: 10.2320/matertrans.MAW201026. DOI

Field D.P., Merriman C.C., Allain-Bonasso N., Wagner F. Quantification of dislocation structure heterogeneity in deformed polycrystals by EBSD. Model. Simul. Mater. Sci. Eng. 2012;20:024007. doi: 10.1088/0965-0393/20/2/024007. DOI

King A.D., Birbilis N., Scully J.R. Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochim. Acta. 2014;121:394–406. doi: 10.1016/j.electacta.2013.12.124. DOI

Baril G., Galicia G., Deslouis C., Pébère N., Tribollet B., Vivier V. An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions. J. Electrochem. Soc. 2007;154:C108–C113. doi: 10.1149/1.2401056. DOI

Xu J., Yang Q., Javed M.S., Gong Y., Aslam M.K., Chen C. The effects of NaF concentration on electrochemical and corrosion behavior of AZ31B magnesium alloy in a composite electrolyte. RSC Adv. 2017;7:5880–5887. doi: 10.1039/C6RA27263K. DOI

Stern M., Geaby A.L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957;104:56–63. doi: 10.1149/1.2428496. DOI

Levenberg K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944;2:164–168. doi: 10.1090/qam/10666. DOI

Marquardt D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963;11:431–441. doi: 10.1137/0111030. DOI

ASTM E750-04 . Book of Standards. ASTM International; West Conshohocken, PA, USA: 2004. Standard Practice for Characterizing Acoustic Emission Instrumentation.

Mayama T., Noda M., Chiba R., Kuroda M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 2011;27:1916–1935. doi: 10.1016/j.ijplas.2011.02.007. DOI

Sillekens W.H., Bohlen J. Hydrostatic Extrusion of Magnesium Alloys. Woodhead Publishing; Sawston, UK: 2012.

Garcés G., Requena G., Tolnai D., Pérez P., Adeva P., Stark A., Schell N. Influence of rare-earth addition on the long-period stacking ordered phase in cast Mg–Y–Zn alloys. J. Mater. Sci. 2014;49:2714–2722. doi: 10.1007/s10853-013-7967-4. DOI

Horvath K., Drozdenko D., Garces G., Mathis K., Dobron P. Magnesium Technology. Springer; Berlin/Heidelberg, Germany: 2017. Effect of Extrusion Ratio on Microstructure and Resulting Mechanical Properties of Mg Alloys with LPSO Phase; pp. 29–34.

Yamasaki M., Anan T., Yoshimoto S., Kawamura Y. Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scr. Mater. 2005;53:799–803. doi: 10.1016/j.scriptamat.2005.06.006. DOI

Li X., Jiang J.-H., Zhao Y.-H., Ma A.-B., Wen D.-J., Zhu Y.-T. Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy. Trans. Nonferrous Met. Soc. China. 2015;25:3909–3920. doi: 10.1016/S1003-6326(15)64038-9. DOI

Song D., Ma A., Jiang J., Lin P., Yang D., Fan J. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 2010;52:481–490. doi: 10.1016/j.corsci.2009.10.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...