Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis bacteriophora Inhibit the Phenoloxidase Activity during the Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-03253S
Grantová Agentura České Republiky
PubMed
32516962
PubMed Central
PMC7349556
DOI
10.3390/insects11060353
PII: insects11060353
Knihovny.cz E-zdroje
- Klíčová slova
- Galleria mellonella, Heterorhabditis bacteriophora, excreted/secreted products, immunity, melanization, phenoloxidase, virulence,
- Publikační typ
- časopisecké články MeSH
Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN Heterorhabditis bacteriophora, and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system. ESPs were isolated from 14- and 21-day-old infective juveniles of H. bacteriophora, which were found to be more virulent than newly emerged nematodes, as was confirmed by mortality assays using Galleria mellonella larvae. The isolated ESPs were further purified and screened for the phenoloxidase-inhibiting activity. In these products, a 38 kDa fraction of peptides was identified as the main candidate source of phenoloxidase-inhibiting compounds. This fraction was further analyzed by mass spectrometry and the de novo sequencing approach. Six peptide sequences were identified in this active ESP fraction, including proteins involved in ubiquitination and the regulation of a Toll pathway, for which a role in the regulation of insect immune response has been proposed in previous studies.
Zobrazit více v PubMed
Georgis R., Koppenhöfer A.M., Lacey L.A., Bélair G., Duncan L.W., Grewal P.S., Samish M., Tan L., Torr P., van Tol R.W.H.M. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control. 2006;38:103–123. doi: 10.1016/j.biocontrol.2005.11.005. DOI
Ehlers R.-U. Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 2001;56:623–633. doi: 10.1007/s002530100711. PubMed DOI
Lacey L.A., Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 2012;44:218–225. PubMed PMC
Dillman A.R., Sternberg P.W. Entomopathogenic nematodes. Curr. Biol. 2012;22:R430–R431. doi: 10.1016/j.cub.2012.03.047. PubMed DOI PMC
Ibrahim E., Dobeš P., Kunc M., Hyršl P., Kodrík D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. J. Insect Physiol. 2018;107:167–174. doi: 10.1016/j.jinsphys.2018.04.002. PubMed DOI
Arefin B., Kucerova L., Dobes P., Markus R., Strnad H., Wang Z., Hyrsl P., Zurovec M., Theopold U. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J. Innate Immun. 2014;6:192–204. doi: 10.1159/000353734. PubMed DOI PMC
Kunc M., Arefin B., Hyrsl P., Theopold U. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly. 2017;11:208–217. doi: 10.1080/19336934.2017.1297350. PubMed DOI PMC
Lewis E.E., Gaugler R., Harrison R. Entomopathogenic nematode host finding: Response to host contact cues by cruise and ambush foragers. Parasitology. 1992;105:309–315. doi: 10.1017/S0031182000074230. DOI
Lewis E.E., Selvan S., Campbell J.F., Gaugler R. Changes in foraging behaviour during the infective stage of entomopathogenic nematodes. Parasitology. 1995;110:583–590. doi: 10.1017/S0031182000065306. DOI
Lewis E.E., Campbell J., Griffin C., Kaya H., Peters A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 2006;38:66–79. doi: 10.1016/j.biocontrol.2005.11.007. DOI
Griffin C.T. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: Traits contributing to nematode fitness and biocontrol efficacy. J. Nematol. 2012;44:177–184. PubMed PMC
Campbell J.F., Lewis E.E., Stock S.P., Nadler S., Kaya H.K. Evolution of host search strategies in entomopathogenic nematodes. J. Nematol. 2003;35:142–145. PubMed PMC
Shapiro-Ilan D.I., Han R., Dolinksi C. Entomopathogenic nematode production and application technology. J. Nematol. 2012;44:206–217. PubMed PMC
Koppenhöfer A.M., Grewal P.S., Fuzy E.M. Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species. J. Invertebr. Pathol. 2007;94:184–195. doi: 10.1016/j.jip.2006.10.005. PubMed DOI
Liao C., Gao A., Li B., Wang M., Shan L. Two symbiotic bacteria of the entomopathogenic nematode Heterorhabditis spp. against Galleria mellonella. Toxicon. 2017;127:85–89. doi: 10.1016/j.toxicon.2016.11.257. PubMed DOI
Bode H.B. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 2009;13:224–230. doi: 10.1016/j.cbpa.2009.02.037. PubMed DOI
Rodou A., Ankrah D.O., Stathopoulos C. Toxins and secretion systems of photorhabdus luminescens. Toxins. 2010;2:1250–1264. doi: 10.3390/toxins2061250. PubMed DOI PMC
Han R., Ehlers R. Pathogenicity, development, and reproduction of heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J. Invertebr. Pathol. 2000;75:55–58. doi: 10.1006/jipa.1999.4900. PubMed DOI
Sicard M., Le Brun N., Pages S., Godelle B., Boemare N., Moulia C. Effect of native xenorhabdus on the fitness of their steinernema hosts: Contrasting types of interaction. Parasitol. Res. 2003;91:520–524. doi: 10.1007/s00436-003-0998-z. PubMed DOI
Ehlers R., Wulff A., Peters A. Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovienii, and the bacto–helminthic complex to larvae of tipula oleracea (Diptera) and galleria mellonella (Lepidoptera) J. Invertebr. Pathol. 1997;69:212–217. doi: 10.1006/jipa.1996.4647. PubMed DOI
Grewal P.S., Peters A. Nematodes as Biocontrol Agents. CABI; Wallingford, UK: 2005. Formulation and quality; pp. 79–90.
Cerenius L., Lee B.L., Söderhäll K. The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29:263–271. doi: 10.1016/j.it.2008.02.009. PubMed DOI
Söderhäll K., Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 1998;10:23–28. doi: 10.1016/S0952-7915(98)80026-5. PubMed DOI
Balasubramanian N., Hao Y.-J., Toubarro D., Nascimento G., Simões N. Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae. Int. J. Parasitol. 2009;39:975–984. doi: 10.1016/j.ijpara.2009.01.012. PubMed DOI
Hao Y.-J., Montiel R., Nascimento G., Toubarro D., Simoes N. Identification and expression analysis of the Steinernema carpocapsae elastase-like serine protease gene during the parasitic stage. Exp. Parasitol. 2009;122:51–60. doi: 10.1016/j.exppara.2009.01.014. PubMed DOI
Toubarro D., Lucena-Robles M., Nascimento G., Costa G., Montiel R., Coelho A.V., Simões N. An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int. J. Parasitol. 2009;39:1319–1330. doi: 10.1016/j.ijpara.2009.04.013. PubMed DOI
Balasubramanian N., Toubarro D., Simões N. Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematode Steinernema carpocapsae. Parasite Immunol. 2010;32:165–175. doi: 10.1111/j.1365-3024.2009.01172.x. PubMed DOI
Balasubramanian N., Nascimento G., Ferreira R., Martinez M., Simões N. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Gene. 2012;500:164–171. doi: 10.1016/j.gene.2012.03.062. PubMed DOI
Balasubramanian N., Toubarro D., Nascimento G., Ferreira R., Simões N. Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage. Mol. Biochem. Parasitol. 2012;182:37–44. doi: 10.1016/j.molbiopara.2011.12.001. PubMed DOI
Toubarro D., Avila M.M., Hao Y., Balasubramanian N., Jing Y., Montiel R., Faria T.Q., Brito R.M., Simões N. A serpin released by an entomopathogen impairs clot formation in insect defense system. PLoS ONE. 2013;8:e69161. doi: 10.1371/journal.pone.0069161. PubMed DOI PMC
Lu D., Macchietto M., Chang D., Barros M.M., Baldwin J., Mortazavi A., Dillman A.R. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog. 2017;13:e1006302. doi: 10.1371/journal.ppat.1006302. PubMed DOI PMC
Toubarro D., Avila M.M., Montiel R., Simões N. A pathogenic nematode targets recognition proteins to avoid insect defenses. PLoS ONE. 2013;8:e75691. doi: 10.1371/journal.pone.0075691. PubMed DOI PMC
Toubarro D., Lucena-Robles M., Nascimento G., Santos R., Montiel R., Veríssimo P., Pires E., Faro C., Coelho A.V., Simões N. Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae. J. Biol. Chem. 2010;285:30666–30675. doi: 10.1074/jbc.M110.129346. PubMed DOI PMC
Jing Y., Toubarro D., Hao Y., Simões N. Cloning, characterisation and heterologous expression of an astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae. Mol. Biochem. Parasitol. 2010;174:101–108. doi: 10.1016/j.molbiopara.2010.07.004. PubMed DOI
Kenney E., Hawdon J.M., O’Halloran D., Eleftherianos I. Heterorhabditis bacteriophora excreted-secreted products enable infection by photorhabdus luminescens through suppression of the imd pathway. Front. Immunol. 2019;10:1–14. doi: 10.3389/fimmu.2019.02372. PubMed DOI PMC
Harnett M.M., Kean D.E., Boitelle A., McGuiness S., Thalhamer T., Steiger C.N., Egan C., Al-Riyami L., Alcocer M.J., Houston K.M., et al. The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis. Ann. Rheum. Dis. 2008;67:518–523. doi: 10.1136/ard.2007.073502. PubMed DOI
Ditgen D., Anandarajah E.M., Meissner K.A., Brattig N., Wrenger C., Liebau E. Harnessing the helminth secretome for therapeutic immunomodulators. Biomed. Res. Int. 2014;2014:1–14. doi: 10.1155/2014/964350. PubMed DOI PMC
Shepherd C., Navarro S., Wangchuk P., Wilson D., Daly N.L., Loukas A. Identifying the immunomodulatory components of helminths. Parasite Immunol. 2015;37:293–303. doi: 10.1111/pim.12192. PubMed DOI
Jančaříková G., Houser J., Dobeš P., Demo G., Hyršl P., Wimmerová M. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog. 2017;13:e1006564. doi: 10.1371/journal.ppat.1006564. PubMed DOI PMC
Wagenaar M.M., Gibson D.M., Clardy J. Akanthomycin, a new antibiotic pyridone from the entomopathogenic fungus akanthomyces gracilis. Org. Lett. 2002;4:671–673. doi: 10.1021/ol016737q. PubMed DOI
Lee S.-Y., Nakajima I., Ihara F., Kinoshita H., Nihira T. Cultivation of entomopathogenic fungi for the search of antibacterial compounds. Mycopathologia. 2005;160:321–325. doi: 10.1007/s11046-005-0179-y. PubMed DOI
Haydak M.H. A food for rearing laboratory animals. J. Econ. Entomol. 1936;29:1026.
Rosa J.S., Bonifassi E., Amaral J., Lacey L.A., Simões N., Laumond C. Natural occurrence of entomopathogenic nematodes (rhabditida: Steinernema, heterorhabditis) in the azores. J. Nematol. 2000;32:215–222. PubMed PMC
Chang D.Z., Serra L., Lu D., Mortazavi A., Dillman A.R. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog. 2019;15:e1007626. doi: 10.1371/journal.ppat.1007626. PubMed DOI PMC
Bai X., Adams B.J., Ciche T.A., Clifton S., Gaugler R., Kim K., Spieth J., Sternberg P.W., Wilson R.K., Grewal P.S. A lover and a fighter: The genome sequence of an entomopathogenic nematode heterorhabditis bacteriophora. PLoS ONE. 2013;8:e69618. doi: 10.1371/journal.pone.0069618. PubMed DOI PMC
Shapiro-llan D.I. Virulence of entomopathogenic nematodes to pecan weevil (Coleoptera: Curculionidae) adults. J. Entomol. Sci. 2001;36:325–328. doi: 10.18474/0749-8004-36.3.325. PubMed DOI
De Batista E.S.P., Auad A.M., Andaló V., de Monteiro C.M.O. Virulence of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) to spittlebug Mahanarva spectabilis (Hemiptera: Cercopidae) Arq. Inst. Biol. 2014;81:145–149. doi: 10.1590/1808-1657001152012. DOI
Koppenhöfer A.M., Grewal P.S., Fuzy E.M. Virulence of the entomopathogenic nematodes Heterorhabditis bacteriophora, Heterorhabditis zealandica, and Steinernema scarabaei against five white grub species (Coleoptera: Scarabaeidae) of economic importance in turfgrass in North America. Biol. Control. 2006;38:397–404. doi: 10.1016/j.biocontrol.2005.12.013. DOI
Del Valle E.E., Frizzo L.S., Lax P., Bonora J.S., Palma L., Bernardi Desch N.P., Pietrobón M., Doucet M.E. Biological control of Diloboderus abderus (Coleoptera: Scarabaeidae) larvae using Steinernema rarum CUL (Nematoda: Steinernematidae) and Heterorhabditis bacteriophora SMC (Nematoda: Heterorhabditidae) Crop. Prot. 2017;98:184–190. doi: 10.1016/j.cropro.2017.04.004. DOI
Crook M. The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int. J. Parasitol. 2014;44:1–8. doi: 10.1016/j.ijpara.2013.08.004. PubMed DOI PMC
Yoder C.A., Grewal P.S., Taylor R.A.J. Rapid age-related changes in infection behavior of entomopathogenic nematodes. J. Parasitol. 2004;90:1229–1234. doi: 10.1645/GE-3315. PubMed DOI
Lee J.H., Dillman A.R., Hallem E.A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 2016;14:36. doi: 10.1186/s12915-016-0259-0. PubMed DOI PMC
Griffin C., Fitters P. Spontaneous and induced activity of Heterorhabditis megidis infective juveniles during storage. Nematology. 2004;6:911–917. doi: 10.1163/1568541044038597. DOI
Gaugler R., Campbell J.F., Lewis E.E. The effects of aging on the foraging behaviour of Steinernema carpocapsae (Rhabdita: Steinernematidae) Nematologica. 1997;43:355–362. doi: 10.1163/005025997X00094. DOI
Leinwand S.G., Yang C.J., Bazopoulou D., Chronis N., Srinivasan J., Chalasani S.H. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans. Elife. 2015;4:1–26. doi: 10.7554/eLife.10181. PubMed DOI PMC
Yadav A.K. Effects of storage temperature on survival and infectivity of three indigenous entomopathogenic nematodes strains (Steinernematidae and Heterorhabditidae) from Meghalaya, India. J. Parasit. Dis. 2016;40:1150–1154. PubMed PMC
Yadav S., Eleftherianos I. Prolonged storage increases virulence of Steinernema entomopathogenic nematodes toward drosophila larvae. J. Parasitol. 2018;104:722–725. doi: 10.1645/18-91. PubMed DOI
Griffin C.T. Effects of prior storage conditions on the infectivity of Heterorhabditis sp. (Nematoda: Heterorhabditidae) Fundam. Appl. Nematol. 1996;19:95–102.
Fitters P.F.L., Dunne R., Griffin C.T. Improved control of otiorhynchus sulcatus at 9 °C by cold-stored heterorhabditis megidis UK211. Biocontrol Sci. Technol. 2001;11:483–492. doi: 10.1080/09583150120067517. DOI
Shapiro-Ilan D.I., Hazir S., Lete L. Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. J. Nematol. 2015;47:184–189. PubMed PMC
Perez E.E., Lewis E.E., Shapiro-Ilan D.I. Impact of the host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions. J. Invertebr. Pathol. 2003;82:111–118. doi: 10.1016/S0022-2011(02)00204-5. PubMed DOI
Hominick W.M., Reid A.P. Perspectives on Entomopathogenic Nematology. CRC Press; Boca Raton, FL, USA: 1990.
Dempsey C.M., Griffin C.T. Phased activity in Heterorhabditis megidis infective juveniles. Parasitology. 2002;124:605–613. doi: 10.1017/S0031182002001609. PubMed DOI
Campbell J.F., Koppenhöfer A.M., Kaya H.K., Chinnasri B. Are there temporarily non-infectious dauer stages in entomopathogenic nematode populations: A test of the phased infectivity hypothesis. Parasitology. 1999;118:499–508. doi: 10.1017/S0031182099003984. PubMed DOI
Huang C.-C., Hall D.H., Hedgecock E.M., Kao G., Karanzta V., Vogel B.E., Hutter H., Chisholm A.D., Yurchenco P.D., Wadswarth W.G. Laminin subunits and their role in C. elegans development. Development. 2003;130:3343–3358. doi: 10.1242/dev.00481. PubMed DOI
Hollister K.A., Conner E.S., Zhang X., Spell M., Bernard G.M., Patel P., de Carvalho A.C.G.V., Butcher R.A., Ragains J.R. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure. Bioorg. Med. Chem. 2013;21:5754–5769. doi: 10.1016/j.bmc.2013.07.018. PubMed DOI PMC
Zhang X., Wang Y., Perez D.H., Jones Lipinski R.A., Butcher R.A. Acyl-CoA oxidases fine-tune the production of ascaroside pheromones with specific side chain lengths. ACS Chem. Biol. 2018;13:1048–1056. doi: 10.1021/acschembio.7b01021. PubMed DOI
Noguez J.H., Conner E.S., Zhou Y., Ciche T.A., Ragains J.R., Butcher R.A. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode heterorhabditis bacteriophora. ACS Chem. Biol. 2012;7:961–966. doi: 10.1021/cb300056q. PubMed DOI PMC
Butcher R.A., Fujita M., Schroeder F.C., Clardy J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 2007;3:420–422. doi: 10.1038/nchembio.2007.3. PubMed DOI
Srinivasan J., von Reuss S.H., Bose N., Zaslaver A., Mahanti P., Ho M.C., O’Doherty O.G., Edison A.S., Sternberg P.W., Schroeder F.C. A modular library of small molecule signals regulates social behaviors in caenorhabditis elegans. PLoS Biol. 2012;10:e1001237. doi: 10.1371/journal.pbio.1001237. PubMed DOI PMC
Macosko E.Z., Pokala N., Feinberg E.H., Chalasani S.H., Butcher R.A., Clardy J., Bargmann C.I. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature. 2009;458:1171–1175. doi: 10.1038/nature07886. PubMed DOI PMC
Butcher R.A. Decoding chemical communication in nematodes. Nat. Prod. Rep. 2017;34:472–477. doi: 10.1039/C7NP00007C. PubMed DOI PMC
Alonso V., Nasrolahi S., Dillman A. Host-specific activation of entomopathogenic nematode infective juveniles. Insects. 2018;9:59. doi: 10.3390/insects9020059. PubMed DOI PMC
Rosa J.S., Simões N. Evaluation of twenty-eight strains of Heterorhabditis bacteriophora isolated in Azores for biocontrol of the armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae) Biol. Control. 2004;29:409–417. doi: 10.1016/j.biocontrol.2003.07.004. DOI
Vadnal J., Ratnappan R., Keaney M., Kenney E., Eleftherianos I., O’Halloran D., Hawdon J.M. Identification of candidate infection genes from the model entomopathogenic nematode Heterorhabditis bacteriophora. BMC Genom. 2017;18:8. doi: 10.1186/s12864-016-3468-6. PubMed DOI PMC
Hao Y.-J., Montiel R., Lucena M.A., Costa M., Simoes N. Genetic diversity and comparative analysis of gene expression between Heterorhabditis bacteriophora Az29 and Az36 isolates: Uncovering candidate genes involved in insect pathogenicity. Exp. Parasitol. 2012;130:116–125. doi: 10.1016/j.exppara.2011.12.001. PubMed DOI
Eleftherianos I., Revenis C. Role and importance of phenoloxidase in insect hemostasis. J. Innate Immun. 2011;3:28–33. doi: 10.1159/000321931. PubMed DOI
Smith V.J. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Chichester, UK: 2010. Immunology of Invertebrates: Cellular; pp. 1–6.
Schmidt O., Theopold U., Strand M. Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays. 2001;23:344–351. doi: 10.1002/bies.1049. PubMed DOI
Ligoxygakis P. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 2002;21:6330–6337. doi: 10.1093/emboj/cdf661. PubMed DOI PMC
Park J.-W., Kim C.-H., Kim J.-H., Je B.-R., Roh K.-B., Kim S.-J., Lee H.-H., Ryu J.-H., Lim J.-H., Oh B.-H., et al. Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc. Natl. Acad. Sci. USA. 2007;104:6602–6607. doi: 10.1073/pnas.0610924104. PubMed DOI PMC
Großhans J., Schnorrer F., Nüsslein-Volhard C. Oligomerisation of tube and pelle leads to nuclear localisation of dorsal. Mech. Dev. 1999;81:127–138. doi: 10.1016/S0925-4773(98)00236-6. PubMed DOI
Huot L., George S., Girard P.-A., Severac D., Nègre N., Duvic B. Spodoptera frugiperda transcriptional response to infestation by Steinernema carpocapsae. Sci. Rep. 2019;9:12879. doi: 10.1038/s41598-019-49410-8. PubMed DOI PMC
Ji S., Sun M., Zheng X., Li L., Sun L., Chen D., Sun Q. Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat. Commun. 2014;5:3458. doi: 10.1038/ncomms4458. PubMed DOI PMC
Haghayeghi A., Sarac A., Czerniecki S., Grosshans J., Schöck F. Pellino enhances innate immunity in Drosophila. Mech. Dev. 2010;127:301–307. doi: 10.1016/j.mod.2010.01.004. PubMed DOI
Cluxton C.D., Caffrey B.E., Kinsella G.K., Moynagh P.N., Fares M.A., Fallon P.G. Functional conservation of an ancestral Pellino protein in helminth species. Sci. Rep. 2015;5:11687. doi: 10.1038/srep11687. PubMed DOI PMC
Davies B.A., Topp J.D., Sfeir A.J., Katzmann D.J., Carney D.S., Tall G.G., Friedberg A.S., Deng L., Chen Z., Horazdovsky B.F. Vps9p CUE domain ubiquitin binding is required for efficient endocytic protein traffic. J. Biol. Chem. 2003;278:19826–19833. doi: 10.1074/jbc.M301059200. PubMed DOI
Zhu L.-L., Luo T.-M., Xu X., Guo Y.-H., Zhao X.-Q., Wang T.-T., Tang B., Jiang Y.-Y., Xu J.-F., Lin X., et al. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor–mediated antifungal innate immunity. J. Exp. Med. 2016;213:1555–1570. doi: 10.1084/jem.20151932. PubMed DOI PMC
Theopold U., Rissler M., Fabbri M., Schmidt O., Natori S. Insect glycobiology: A lectin multigene family in drosophila melanogaster. Biochem. Biophys. Res. Commun. 1999;261:923–927. doi: 10.1006/bbrc.1999.1121. PubMed DOI
Yu X.-Q., Gan H.R., Kanost M. Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem. Mol. Biol. 1999;29:585–597. doi: 10.1016/S0965-1748(99)00036-3. PubMed DOI
Yu X.-Q., Kanost M.R. Immulectin-2, a lipopolysaccharide-specific lectin from an insect, manduca sexta, is induced in response to gram-negative bacteria. J. Biol. Chem. 2000;275:37373–37381. doi: 10.1074/jbc.M003021200. PubMed DOI
Kud J., Wang W., Gross R., Fan Y., Huang L., Yuan Y., Gray A., Duarte A., Kuhl J.C., Caplan A., et al. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog. 2019;15:e1007720. doi: 10.1371/journal.ppat.1007720. PubMed DOI PMC
Chronis D., Chen S., Lu S., Hewezi T., Carpenter S.C.D., Loria R., Baum T.J., Wang X. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant. J. 2013;74:185–196. doi: 10.1111/tpj.12125. PubMed DOI
Eves-van den Akker S., Laetsch D.R., Thorpe P., Lilley C.J., Danchin E.G.J., Da Rocha M., Rancurel C., Holroyd N.E., Cotton J.A., Szitenberg A., et al. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol. 2016;17:124. doi: 10.1186/s13059-016-0985-1. PubMed DOI PMC
Chen C., Cui L., Chen Y., Zhang H., Liu P., Wu P., Qiu D., Zou J., Yang D., Yang L., et al. Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci. Rep. 2017;7:14471. doi: 10.1038/s41598-017-14047-y. PubMed DOI PMC