• This record comes from PubMed

Ethylene-Octene-Copolymer with Embedded Carbon and Organic Conductive Nanostructures for Thermoelectric Applications

. 2020 Jun 09 ; 12 (6) : . [epub] 20200609

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Hybrid thermoelectric composites consisting of organic ethylene-octene-copolymer matrices (EOC) and embedded inorganic pristine and functionalized multiwalled carbon nanotubes, carbon nanofibers or organic polyaniline and polypyrrole particles were used to form conductive nanostructures with thermoelectric properties, which at the same time had sufficient strength, elasticity, and stability. Oxygen doping of carbon nanotubes increased the concentration of carboxyl and C-O functional groups on the nanotube surfaces and enhanced the thermoelectric power of the respective composites by up to 150%. A thermocouple assembled from EOC composites generated electric current by heat supplied with a mere short touch of the finger. A practical application of this thermocouple was provided by a self-powered vapor sensor, for operation of which an electric current in the range of microvolts sufficed, and was readily induced by (waste) heat. The heat-induced energy ensured the functioning of this novel sensor device, which converted chemical signals elicited by the presence of heptane vapors to the electrical domain through the resistance changes of the comprising EOC composites.

See more in PubMed

Petsagkourakis I., Tybrant K., Crispin X., Ohkubo I., Satoh N., Mori T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018;19:836–862. doi: 10.1080/14686996.2018.1530938. PubMed DOI PMC

MacDiarmid A.G., Chiang J.C., Richter A.F., Epstein A.J. Polyaniline—A new concept in conducting polymers. Synth. Met. 1987;18:285–290. doi: 10.1016/0379-6779(87)90893-9. DOI

Hao B., Li L.C., Wang Y.P., Qian H.S., Tong G.X., Chen H.F., Chen K.Y. Electrical and microwave absorbing properties of polypyrrole synthesized by optimum strategy. J. Appl. Polym. Sci. 2013;127:4273–4279. doi: 10.1002/app.38032. DOI

Trivedi D. Polyanilines. In: Nalwa H.S., editor. Handbook of Organic Conductive Molecules and Polymers. Volume 2. Wiley; Chichester, UK: 1997. pp. 505–572.

Wang W.J., Sun S.P., Gu S.J., Shen H.W., Zhang Q.H., Zhu J.J., Wang L.J., Jiang W. One-pot fabrication and thermoelectric properties of Ag nanoparticles-polyaniline hybrid nanocomposites. RSC Adv. 2014;51:26810–26816. doi: 10.1039/C4RA02136C. DOI

Mitra M., Kulsi C., Kargupta K., Ganguly S., Banerjee D. Composite of polyaniline-bismuth selenide with enhanced thermoelectric performance. J. Appl. Polym. Sci. 2018;135:46887. doi: 10.1002/app.46887. DOI

Ube T., Koyanagi J., Kosaki T., Fujimoto K., Yokozeki T., Ishiguro T., Nishio K. Fabrication of well-isolated graphene and evaluation of thermoelectric performance of polyaniline-graphene composite film. J. Mat. Sci. 2019;54:3904–3913. doi: 10.1007/s10853-018-3129-z. DOI

Liang L.R., Chen G.M., Guo C.Y. Polypyrrole nanostructures and their thermoelectric performance. Mat. Chem. Front. 2017;1:380–386. doi: 10.1039/C6QM00061D. DOI

Misra S., Bharti M., Singh A., Debnath A.K., Aswal D.K., Hayakawa Y. Nanostructured polypyrrole: Enhancement in thermoelectric figure of merit through suppression of thermal conductivity. Mat. Res. Exp. 2017;4:085007. doi: 10.1088/2053-1591/aa7b1f. DOI

Du Y., Niu H., Li J., Dou Y.C., Shen S.Z., Jia R.P., Xu J.Y. Morphologies Tuning of Polypyrrole and Thermoelectric Properties of Polypyrrole Nanowire/Graphene Composites. Polymers. 2018;10:1143. doi: 10.3390/polym10101143. PubMed DOI PMC

Aghelinejad M., Zhang Y.C., Leung S.N. Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multi-walled carbon nanotubes nanocomposites. Synt. Met. 2019;247:59–66. doi: 10.1016/j.synthmet.2018.11.016. DOI

Bharti M., Singh A., Samanta S., Debnath A.K., Aswal D.K., Muthe K.P., Gadkari S.C. Flexo-green Polypyrrole–Silver nanocomposite films for thermoelectric power generation. Energ. Convers. Manage. 2017;144:143–152. doi: 10.1016/j.enconman.2017.04.022. DOI

Wang Y.H., Yang J., Wang L.Y., Du K., Yin Q., Yin Q.J. Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor. ACS Appl. Mat. Interf. 2017;9:20124–20131. doi: 10.1021/acsami.7b05357. PubMed DOI

Slobodian P., Riha P., Olejnik R., Benlikaya R. Analysis of sensing properties of thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites. Carbon. 2016;110:257–266. doi: 10.1016/j.carbon.2016.09.023. DOI

Nonoguchi Y., Ohashi K., Kanazawa R., Ashiba K., Hata K., Nakagawa T., Adachi C., Tanase T., Kawai T. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 2013;3:3344. doi: 10.1038/srep03344. PubMed DOI PMC

Du Y., Cai K.F., Chen S., Wang H., Shen S.Z., Donelson R., Lin T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015;5:6144. doi: 10.1038/srep06411. PubMed DOI PMC

Yang Y., Lin Z.H., Hou T., Zhang F., Wang Z.L. Nanowure-composite based flexible thermoelectrics nanogenerqators and self-powered temperature sensors. Nano Res. 2012 doi: 10.1007/s12274-012-0272-8. DOI

Du Y., Xu J., Paul B., Eklund P. Review: Flexible thermoelectric materials and devices. Appl. Mater. Today. 2018;18:366–388. doi: 10.1016/j.apmt.2018.07.004. DOI

Slobodian P., Riha P., Lengalova A., Svoboda P., Saha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon. 2011;49:2499–2507. doi: 10.1016/j.carbon.2011.02.020. DOI

Stejskal J., Gilbert R.G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI

Benlikaya R., Slobodian P., Riha P. Enhanced strain-dependent electrical resistance of polyurethane composites with embedded oxidized multiwalled carbon nanotube networks. J. Nanomat. 2013;2013:327597. doi: 10.1155/2013/327597. DOI

Jansson P.A., editor. Deconvolution of Spectra and Images. Academic Press; San Diego, CA, USA: 1997. pp. 119–134.

Hernadi K., Siska A., Thien-Nga L., Forro L., Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics. 2001;141:203–209. doi: 10.1016/S0167-2738(01)00789-5. DOI

Rasheed A., Howe J.Y., Dadmun M.D., Britt P.F. The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon. 2007;45:1072–1080. doi: 10.1016/j.carbon.2006.12.010. DOI

Wepasnick K.A., Smith B.A., Schrote K.E., Wilson H.K., Diegelmann S.R., Fairbrothe D.H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon. 2011;49:24–36. doi: 10.1016/j.carbon.2010.08.034. DOI

Ros T.G., Van Dillen A.J., Geus J.W., Koningsberger D.C. Surface oxidation of carbon nanofibres. Chem. Eur. J. 2002;8:1151–1162. doi: 10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#. PubMed DOI

Chen J., Chen Q., Ma Q. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J. Coll. Int. Sci. 2012;370:32–38. doi: 10.1016/j.jcis.2011.12.073. PubMed DOI

Abuilaiwi F.A., Laoui T., Al-Harthi M., Atieh M.A. Modification and functionalization of multiwalled carbon nanotubes (MWCNT) via Fischer esterification. Arab. J. Sci. Eng. 2010;35:37–48.

Fanning P.E., Vannice M.A. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon. 1993;31:721–730. doi: 10.1016/0008-6223(93)90009-Y. DOI

Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marın F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon. 2000;38:1995–2001. doi: 10.1016/S0008-6223(00)00048-8. DOI

Kim U.J., Furtado C.A., Liu X., Chen G., Eklund P.C. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 2005;127:15437–15445. doi: 10.1021/ja052951o. PubMed DOI

Zhang J., Zou H., Qing Q., Yang Y., Li Q., Liu Z., Guo X., Du Z. Effect of chemical oxidation on the structure of sigle-walled nanotubes. J. Phys. Chem. B. 2003;107:3712–3718. doi: 10.1021/jp027500u. DOI

Liang Y., Zhang H., Yi B., Zhang Z., Tan Z. Preparation and characterization of multi-walled carbon nanotubes supported Pt Ru catalysts for proton exchange membrane fuel cells. Carbon. 2005;43:3144–3152. doi: 10.1016/j.carbon.2005.06.017. DOI

Tang J.S., Jing X.B., Wang B.C., Wang F. Infrared-spectra of soluble polyaniline. Synth. Met. 1988;24:231–238. doi: 10.1016/0379-6779(88)90261-5. DOI

MacDiarmid A.G., Chiang J.C., Huang W.S., Humphery B.D., Somasiri N.L.D. Polyaniline: Protonic acid doping to the metallic regime. Mol. Cryst. Liquid Cryst. 1985;25:309–318. doi: 10.1080/00268948508080110. DOI

Brožová L., Holler P., Kovářová J., Stejskal J., Trchová M. The stability of polyaniline in strongly alkaline or acidic aqueous media. Polym. Degrad. Stabil. 2008;93:592–600. doi: 10.1016/j.polymdegradstab.2008.01.012. DOI

Wang J.G., Neoh K.G., Kang E.T. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films. 2004;446:205–217. doi: 10.1016/j.tsf.2003.09.074. DOI

Cheah K., Forsyth M., Truong V.T. Ordering and stability in conducting polypyrrole. Synth. Met. 1998;94:215–219. doi: 10.1016/S0379-6779(98)00006-X. DOI

Krause B., Barbier C., Levente J., Klaus M., Pötschke P. Screening of different carbon nanotubes in melt-mixed polymer composites with different polymer matrices for their thermoelectrical properties. J. Composit. Sci. 2019;3:106. doi: 10.3390/jcs3040106. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Polymer Processing and Surfaces

. 2021 Feb 11 ; 13 (4) : . [epub] 20210211

Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures

. 2021 Jan 05 ; 21 (1) : . [epub] 20210105

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...