Ethylene-Octene-Copolymer with Embedded Carbon and Organic Conductive Nanostructures for Thermoelectric Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32526898
PubMed Central
PMC7362210
DOI
10.3390/polym12061316
PII: polym12061316
Knihovny.cz E-resources
- Keywords
- carbon fibers, carbon nanotubes, ethylene-octene-copolymer, polyaniline, polypyrrole, thermoelectric composites,
- Publication type
- Journal Article MeSH
Hybrid thermoelectric composites consisting of organic ethylene-octene-copolymer matrices (EOC) and embedded inorganic pristine and functionalized multiwalled carbon nanotubes, carbon nanofibers or organic polyaniline and polypyrrole particles were used to form conductive nanostructures with thermoelectric properties, which at the same time had sufficient strength, elasticity, and stability. Oxygen doping of carbon nanotubes increased the concentration of carboxyl and C-O functional groups on the nanotube surfaces and enhanced the thermoelectric power of the respective composites by up to 150%. A thermocouple assembled from EOC composites generated electric current by heat supplied with a mere short touch of the finger. A practical application of this thermocouple was provided by a self-powered vapor sensor, for operation of which an electric current in the range of microvolts sufficed, and was readily induced by (waste) heat. The heat-induced energy ensured the functioning of this novel sensor device, which converted chemical signals elicited by the presence of heptane vapors to the electrical domain through the resistance changes of the comprising EOC composites.
See more in PubMed
Petsagkourakis I., Tybrant K., Crispin X., Ohkubo I., Satoh N., Mori T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018;19:836–862. doi: 10.1080/14686996.2018.1530938. PubMed DOI PMC
MacDiarmid A.G., Chiang J.C., Richter A.F., Epstein A.J. Polyaniline—A new concept in conducting polymers. Synth. Met. 1987;18:285–290. doi: 10.1016/0379-6779(87)90893-9. DOI
Hao B., Li L.C., Wang Y.P., Qian H.S., Tong G.X., Chen H.F., Chen K.Y. Electrical and microwave absorbing properties of polypyrrole synthesized by optimum strategy. J. Appl. Polym. Sci. 2013;127:4273–4279. doi: 10.1002/app.38032. DOI
Trivedi D. Polyanilines. In: Nalwa H.S., editor. Handbook of Organic Conductive Molecules and Polymers. Volume 2. Wiley; Chichester, UK: 1997. pp. 505–572.
Wang W.J., Sun S.P., Gu S.J., Shen H.W., Zhang Q.H., Zhu J.J., Wang L.J., Jiang W. One-pot fabrication and thermoelectric properties of Ag nanoparticles-polyaniline hybrid nanocomposites. RSC Adv. 2014;51:26810–26816. doi: 10.1039/C4RA02136C. DOI
Mitra M., Kulsi C., Kargupta K., Ganguly S., Banerjee D. Composite of polyaniline-bismuth selenide with enhanced thermoelectric performance. J. Appl. Polym. Sci. 2018;135:46887. doi: 10.1002/app.46887. DOI
Ube T., Koyanagi J., Kosaki T., Fujimoto K., Yokozeki T., Ishiguro T., Nishio K. Fabrication of well-isolated graphene and evaluation of thermoelectric performance of polyaniline-graphene composite film. J. Mat. Sci. 2019;54:3904–3913. doi: 10.1007/s10853-018-3129-z. DOI
Liang L.R., Chen G.M., Guo C.Y. Polypyrrole nanostructures and their thermoelectric performance. Mat. Chem. Front. 2017;1:380–386. doi: 10.1039/C6QM00061D. DOI
Misra S., Bharti M., Singh A., Debnath A.K., Aswal D.K., Hayakawa Y. Nanostructured polypyrrole: Enhancement in thermoelectric figure of merit through suppression of thermal conductivity. Mat. Res. Exp. 2017;4:085007. doi: 10.1088/2053-1591/aa7b1f. DOI
Du Y., Niu H., Li J., Dou Y.C., Shen S.Z., Jia R.P., Xu J.Y. Morphologies Tuning of Polypyrrole and Thermoelectric Properties of Polypyrrole Nanowire/Graphene Composites. Polymers. 2018;10:1143. doi: 10.3390/polym10101143. PubMed DOI PMC
Aghelinejad M., Zhang Y.C., Leung S.N. Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multi-walled carbon nanotubes nanocomposites. Synt. Met. 2019;247:59–66. doi: 10.1016/j.synthmet.2018.11.016. DOI
Bharti M., Singh A., Samanta S., Debnath A.K., Aswal D.K., Muthe K.P., Gadkari S.C. Flexo-green Polypyrrole–Silver nanocomposite films for thermoelectric power generation. Energ. Convers. Manage. 2017;144:143–152. doi: 10.1016/j.enconman.2017.04.022. DOI
Wang Y.H., Yang J., Wang L.Y., Du K., Yin Q., Yin Q.J. Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor. ACS Appl. Mat. Interf. 2017;9:20124–20131. doi: 10.1021/acsami.7b05357. PubMed DOI
Slobodian P., Riha P., Olejnik R., Benlikaya R. Analysis of sensing properties of thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites. Carbon. 2016;110:257–266. doi: 10.1016/j.carbon.2016.09.023. DOI
Nonoguchi Y., Ohashi K., Kanazawa R., Ashiba K., Hata K., Nakagawa T., Adachi C., Tanase T., Kawai T. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 2013;3:3344. doi: 10.1038/srep03344. PubMed DOI PMC
Du Y., Cai K.F., Chen S., Wang H., Shen S.Z., Donelson R., Lin T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015;5:6144. doi: 10.1038/srep06411. PubMed DOI PMC
Yang Y., Lin Z.H., Hou T., Zhang F., Wang Z.L. Nanowure-composite based flexible thermoelectrics nanogenerqators and self-powered temperature sensors. Nano Res. 2012 doi: 10.1007/s12274-012-0272-8. DOI
Du Y., Xu J., Paul B., Eklund P. Review: Flexible thermoelectric materials and devices. Appl. Mater. Today. 2018;18:366–388. doi: 10.1016/j.apmt.2018.07.004. DOI
Slobodian P., Riha P., Lengalova A., Svoboda P., Saha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon. 2011;49:2499–2507. doi: 10.1016/j.carbon.2011.02.020. DOI
Stejskal J., Gilbert R.G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI
Benlikaya R., Slobodian P., Riha P. Enhanced strain-dependent electrical resistance of polyurethane composites with embedded oxidized multiwalled carbon nanotube networks. J. Nanomat. 2013;2013:327597. doi: 10.1155/2013/327597. DOI
Jansson P.A., editor. Deconvolution of Spectra and Images. Academic Press; San Diego, CA, USA: 1997. pp. 119–134.
Hernadi K., Siska A., Thien-Nga L., Forro L., Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics. 2001;141:203–209. doi: 10.1016/S0167-2738(01)00789-5. DOI
Rasheed A., Howe J.Y., Dadmun M.D., Britt P.F. The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon. 2007;45:1072–1080. doi: 10.1016/j.carbon.2006.12.010. DOI
Wepasnick K.A., Smith B.A., Schrote K.E., Wilson H.K., Diegelmann S.R., Fairbrothe D.H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon. 2011;49:24–36. doi: 10.1016/j.carbon.2010.08.034. DOI
Ros T.G., Van Dillen A.J., Geus J.W., Koningsberger D.C. Surface oxidation of carbon nanofibres. Chem. Eur. J. 2002;8:1151–1162. doi: 10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#. PubMed DOI
Chen J., Chen Q., Ma Q. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J. Coll. Int. Sci. 2012;370:32–38. doi: 10.1016/j.jcis.2011.12.073. PubMed DOI
Abuilaiwi F.A., Laoui T., Al-Harthi M., Atieh M.A. Modification and functionalization of multiwalled carbon nanotubes (MWCNT) via Fischer esterification. Arab. J. Sci. Eng. 2010;35:37–48.
Fanning P.E., Vannice M.A. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon. 1993;31:721–730. doi: 10.1016/0008-6223(93)90009-Y. DOI
Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marın F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon. 2000;38:1995–2001. doi: 10.1016/S0008-6223(00)00048-8. DOI
Kim U.J., Furtado C.A., Liu X., Chen G., Eklund P.C. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 2005;127:15437–15445. doi: 10.1021/ja052951o. PubMed DOI
Zhang J., Zou H., Qing Q., Yang Y., Li Q., Liu Z., Guo X., Du Z. Effect of chemical oxidation on the structure of sigle-walled nanotubes. J. Phys. Chem. B. 2003;107:3712–3718. doi: 10.1021/jp027500u. DOI
Liang Y., Zhang H., Yi B., Zhang Z., Tan Z. Preparation and characterization of multi-walled carbon nanotubes supported Pt Ru catalysts for proton exchange membrane fuel cells. Carbon. 2005;43:3144–3152. doi: 10.1016/j.carbon.2005.06.017. DOI
Tang J.S., Jing X.B., Wang B.C., Wang F. Infrared-spectra of soluble polyaniline. Synth. Met. 1988;24:231–238. doi: 10.1016/0379-6779(88)90261-5. DOI
MacDiarmid A.G., Chiang J.C., Huang W.S., Humphery B.D., Somasiri N.L.D. Polyaniline: Protonic acid doping to the metallic regime. Mol. Cryst. Liquid Cryst. 1985;25:309–318. doi: 10.1080/00268948508080110. DOI
Brožová L., Holler P., Kovářová J., Stejskal J., Trchová M. The stability of polyaniline in strongly alkaline or acidic aqueous media. Polym. Degrad. Stabil. 2008;93:592–600. doi: 10.1016/j.polymdegradstab.2008.01.012. DOI
Wang J.G., Neoh K.G., Kang E.T. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films. 2004;446:205–217. doi: 10.1016/j.tsf.2003.09.074. DOI
Cheah K., Forsyth M., Truong V.T. Ordering and stability in conducting polypyrrole. Synth. Met. 1998;94:215–219. doi: 10.1016/S0379-6779(98)00006-X. DOI
Krause B., Barbier C., Levente J., Klaus M., Pötschke P. Screening of different carbon nanotubes in melt-mixed polymer composites with different polymer matrices for their thermoelectrical properties. J. Composit. Sci. 2019;3:106. doi: 10.3390/jcs3040106. DOI
Polymer Processing and Surfaces
Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures