Cold atmospheric pressure plasma: simple and efficient strategy for preparation of poly(2-oxazoline)-based coatings designed for biomedical applications

. 2020 Jun 11 ; 10 (1) : 9478. [epub] 20200611

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32528062
Odkazy

PubMed 32528062
PubMed Central PMC7289869
DOI 10.1038/s41598-020-66423-w
PII: 10.1038/s41598-020-66423-w
Knihovny.cz E-zdroje

Poly(2-oxazolines) (POx) are an attractive material of choice for biocompatible and bioactive coatings in medical applications. To prepare POx coatings, the plasma polymerization represents a fast and facile approach that is surface-independent. However, unfavorable factors of this method such as using the low-pressure regimes and noble gases, or poor control over the resulting surface chemistry limit its utilization. Here, we propose to overcome these drawbacks by using well-defined POx-based copolymers prepared by living cationic polymerization as a starting material. Chemically inert polytetrafluoroethylene (PTFE) is selected as a substrate due to its beneficial features for medical applications. The deposited POx layer is additionally post-treated by non-equilibrium plasma generated at atmospheric pressure. For this purpose, diffuse coplanar surface barrier discharge (DCSBD) is used as a source of "cold" homogeneous plasma, as it is operating at atmospheric pressure even in ambient air. Prepared POx coatings possess hydrophilic nature with an achieved water contact angle of 60°, which is noticeably lower in comparison to the initial value of 106° for raw PTFE. Moreover, the increased fibroblasts adhesion in comparison to raw PTFE is achieved, and the physical and biological properties of the POx-modified surfaces remain stable for 30 days.

Zobrazit více v PubMed

MacGregor-Ramiasa MN, Vasilev K. Questions and Answers on the Wettability of Nano-Engineered Surfaces. Adv. Mater. Interfaces. 2017;4:1–24. doi: 10.1002/admi.201700381. DOI

Blakney AK, Swartzlander MD, Bryant SJ. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. - Part A. 2012;100 A:1375–1386. doi: 10.1002/jbm.a.34104. PubMed DOI PMC

Divandari M, et al. Topology Effects on the Structural and Physicochemical Properties of Polymer Brushes. Macromolecules. 2017;50:7760–7769. doi: 10.1021/acs.macromol.7b01720. DOI

Morgese G, et al. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew. Chemie - Int. Ed. 2018;57:11667–11672. doi: 10.1002/anie.201805620. PubMed DOI

Gabriel M, et al. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach. Bioconjug. Chem. 2016;27:1216–1221. doi: 10.1021/acs.bioconjchem.6b00047. PubMed DOI

Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol. Rapid Commun. 2020;1900430:1–26. doi: 10.1002/marc.201900430. PubMed DOI

Bludau H, et al. POxylation as an alternative stealth coating for biomedical applications. Eur. Polym. J. 2017;88:679–688. doi: 10.1016/j.eurpolymj.2016.10.041. PubMed DOI PMC

Morgese G, Benetti EM. Polyoxazoline biointerfaces by surface grafting. Eur. Polym. J. 2017;88:470–485. doi: 10.1016/j.eurpolymj.2016.11.003. DOI

Luxenhofer R, et al. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J. Control. Release. 2011;153:73–82. doi: 10.1016/j.jconrel.2011.04.010. PubMed DOI PMC

Bauer M, et al. In vitro hemocompatibility and cytotoxicity study of poly(2-methyl-2-oxazoline) for biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2013;51:1816–1821. doi: 10.1002/pola.26564. DOI

Kronek J, Paulovičová E, Paulovičová L, Kroneková Z, Lustoň J. Immunomodulatory efficiency of poly(2-oxazolines) J. Mater. Sci. Mater. Med. 2012;23:1457–64. doi: 10.1007/s10856-012-4621-7. PubMed DOI

Kroneková Z, et al. Ex Vivo and In Vitro Studies on the Cytotoxicity and Immunomodulative Properties of Poly(2-isopropenyl-2-oxazoline) as a New Type of Biomedical Polymer. Macromol. Biosci. 2016;16:1200–1211. doi: 10.1002/mabi.201600016. PubMed DOI

Dworak A, et al. Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment. J. Mater. Sci. Mater. Med. 2014;25:1149–1163. doi: 10.1007/s10856-013-5135-7. PubMed DOI

Jordan R, Ulman A. Surface Initiated Living Cationic Polymerization of 2-Oxazolines. J. Am. Chem. Soc. 1998;120:243–247. doi: 10.1021/ja973392r. DOI

Zhang N, Steenackers M, Luxenhofer R, Jordan R. Bottle-Brush Brushes: Cylindrical Molecular Brushes of Poly(2-oxazoline) on Glassy Carbon. Macromolecules. 2009;42:5345–5351. doi: 10.1021/ma900329y. DOI

Chang BJ, et al. Surface-attached polymer monolayers for the control of endothelial cell adhesion. Colloids Surfaces A Physicochem. Eng. Asp. 2002;198–200:519–526. doi: 10.1016/S0927-7757(01)00952-9. DOI

Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl. Mater. Interfaces. 2011;3:3463–3471. doi: 10.1021/am200690s. PubMed DOI PMC

Schulz A, et al. Direct Photomodification of Polymer Surfaces: Unleashing the Potential of Aryl-Azide Copolymers. Adv. Funct. Mater. 2018;28:1–7. doi: 10.1002/adfm.201800976. DOI

He T, et al. Efficient and robust coatings using poly(2-methyl-2-oxazoline) and its copolymers for marine and bacterial fouling prevention. J. Polym. Sci. Part A Polym. Chem. 2016;54:275–283. doi: 10.1002/pola.27912. DOI

He T, et al. Stable pH responsive layer-by-layer assemblies of partially hydrolysed poly(2-ethyl-2-oxazoline) and poly(acrylic acid) for effective prevention of protein, cell and bacteria surface attachment. Colloids Surfaces B Biointerfaces. 2018;161:269–278. doi: 10.1016/j.colsurfb.2017.10.031. PubMed DOI

Bhatt S, Pulpytel J, Mirshahi M, Arefi-Khonsari F. Cell resistant peptidomimetic poly (2-ethyl-2-oxazoline) coatings developed by low pressure inductively excited pulsed plasma polymerization for biomedical purpose. Plasma Process. Polym. 2015;12:519–532. doi: 10.1002/ppap.201400169. DOI

Ramiasa MN, et al. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/c5cc00260e. PubMed DOI

Macgregor-Ramiasa MN, Cavallaro AA, Vasilev K. Properties and reactivity of polyoxazoline plasma polymer films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/c5tb00901d. PubMed DOI

Cavallaro AA, Macgregor-Ramiasa MN, Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based. Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI

Macgregor-Ramiasa M, et al. A platform for selective immuno-capture of cancer cells from urine. Biosens. Bioelectron. 2017;96:373–380. doi: 10.1016/j.bios.2017.02.011. PubMed DOI

Gonzalez Garcia LE, Macgregor-Ramiasa M, Visalakshan RM, Vasilev K. Protein Interactions with Nanoengineered Polyoxazoline Surfaces Generated via Plasma Deposition. Langmuir. 2017;33:7322–7331. doi: 10.1021/acs.langmuir.7b01279. PubMed DOI

Visalakshan RM, et al. Creating Nano-engineered Biomaterials with Well-Defined Surface Descriptors. ACS Appl. Nano Mater. 2018;1:2796–2807. doi: 10.1021/acsanm.8b00458. DOI

Macgregor MN, Michelmore A, Safizadeh Shirazi H, Whittle J, Vasilev K. Secrets of Plasma-Deposited Polyoxazoline Functionality Lie in the Plasma Phase. Chem. Mater. 2017;29:8047–8051. doi: 10.1021/acs.chemmater.7b03023. DOI

Cassady AI, Hidzir NM, Grøndahl L. Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. J. Appl. Polym. Sci. 2014;131(40533):1–14. doi: 10.1002/app.40533. DOI

Kelar J, Shekargoftar M, Krumpolec R, Homola T. Activation of polycarbonate (PC) surfaces by atmospheric pressure plasma in ambient air. Polym. Test. 2018;67:428–434. doi: 10.1016/j.polymertesting.2018.03.027. DOI

Černák M, Černáková L, Hudec I, Kováčik D, Zahoranová A. Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009;47:22806. doi: 10.1051/epjap/2009131. DOI

Černák M, et al. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion. 2011;53:124031. doi: 10.1088/0741-3335/53/12/124031. DOI

Zahoranová A, et al. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process. 2018;38:969–988. doi: 10.1007/s11090-018-9913-3. DOI

Šrámková P, Zahoranová A, Kroneková Z, Šišková A, Kronek J. Poly(2-oxazoline) hydrogels by photoinduced thiol-ene “click” reaction using different dithiol crosslinkers. J. Polym. Res. 2017;24:82. doi: 10.1007/s10965-017-1237-0. DOI

Dargaville TR, Lava K, Verbraeken B, Hoogenboom R. Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules. 2016;49:4774–4783. doi: 10.1021/acs.macromol.6b00167. DOI

Farrugia BL, Kempe K, Schubert US, Hoogenboom R, Dargaville TR. Poly(2-oxazoline) Hydrogels for Controlled Fibroblast Attachment. Biomacromolecules. 2013;14:2724–2732. doi: 10.1021/bm400518h. PubMed DOI

Tučeková Z, Koval’ová Z, Zahoranová A, Machala Z, Černák M. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge. Eur. Phys. J. Appl. Phys. 2016;75:24711. doi: 10.1051/epjap/2016150590. DOI

Krumpolec R, Cameron DC, Homola T, Černák M. Surface chemistry and initial growth of Al 2 O 3 on plasma modified PTFE studied by ALD. Surfaces and Interfaces. 2017;6:223–228. doi: 10.1016/j.surfin.2016.10.005. DOI

Károly Z, et al. Effect of Atmospheric Cold Plasma Treatment on the Adhesion and Tribological Properties of Polyamide 66 and Poly(Tetrafluoroethylene) Materials (Basel). 2019;12:658. doi: 10.3390/ma12040658. PubMed DOI PMC

Pavliňák D, et al. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges. Appl. Phys. Lett. 2014;105:154102. doi: 10.1063/1.4898134. DOI

Tóth A, et al. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma. Open Chem. 2015;13:557–563. doi: 10.1515/chem-2015-0072. DOI

Jordan R, Martin K, Räder HJ, Unger KK. Lipopolymers for Surface Functionalizations. 1. Synthesis and Characterization of Terminal Functionalized Poly(N -propionylethylenimine)s. Macromolecules. 2001;34:8858–8865. doi: 10.1021/ma011573e. DOI

Gulyuz S, et al. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline)-based amphiphilic block copolymers prepared by CuAAC click chemistry. Express Polym. Lett. 2018;12:146–158. doi: 10.3144/expresspolymlett.2018.13. DOI

Van Guyse JFR, et al. Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:31356–31366. doi: 10.1021/acsami.9b09999. PubMed DOI

MacGregor M, Sinha U, Visalakshan RM, Cavallaro A, Vasilev K. Preserving the reactivity of coatings plasma deposited from oxazoline precursors − An in depth study. Plasma Process. Polym. 2019;16:1–12. doi: 10.1002/ppap.201800130. DOI

Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: Possible solutions to overcome foreign body response. AAPS Journal. 2010;12:188–196. doi: 10.1208/s12248-010-9175-3. PubMed DOI PMC

Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7:55–70. doi: 10.1089/107632700300003297. PubMed DOI

Heitz J, et al. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere. J. Biomed. Mater. Res. Part A. 2003;67A:130–137. doi: 10.1002/jbm.a.10043. PubMed DOI

Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z. & Svorcik, V. Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Jpn. J. Appl. Phys. 56, 06GG03, 1–6, 10.1002/jbm.a.10043 (2017).

Slepička P, Kasálková NS, Stránská E, Bačáková L, Švorčík V. Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 2013;7:535–545. doi: 10.3144/expresspolymlett.2013.50. DOI

de la Rosa VR. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014;25:1211–25. doi: 10.1007/s10856-013-5034-y. PubMed DOI

Lorson T, et al. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–280. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI

Weydert S, et al. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. Langmuir. 2017;33:8594–8605. doi: 10.1021/acs.langmuir.7b01437. PubMed DOI

Zhang N, et al. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion. Macromol. Biosci. 2012;12:926–936. doi: 10.1002/mabi.201200026. PubMed DOI

Macgregor, M. & Vasilev, K. Perspective on plasma polymers for applied biomaterials nanoengineering and the recent rise of oxazolines. Materials (Basel). 12, 10.3390/ma12010191 (2019) PubMed PMC

Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B. 1998;102:426–436. doi: 10.1021/jp972635z. DOI

Pertsin AJ, Grunze M. Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir. 2000;16:8829–8841. doi: 10.1021/la000340y. DOI

Desmet T, et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI

Lee JH, Khang G, Lee JW, Lee HB. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J. Colloid Interface Sci. 1998;205:323–330. doi: 10.1006/jcis.1998.5688. PubMed DOI

Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007;28:2175–2182. doi: 10.1016/j.biomaterials.2007.01.019. PubMed DOI

Krumpolec R, Čech J, Jurmanová J, Ďurina P, Černák M. Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen. Surf. Coatings Technol. 2017;309:301–308. doi: 10.1016/j.surfcoat.2016.11.036. DOI

Galmiz, O., Zemánek, M., Pavliňák, D. & Černák, M. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes. J. Phys. D. Appl. Phys. 51, 10.1088/1361-6463/aabb49 (2018)

Galmiz O, et al. Effect of atmospheric pressure plasma on surface modification of paper. AIP Adv. 2019;9:105013. doi: 10.1063/1.5124149. DOI

Štěpánová V, et al. Surface modification of natural leather using diffuse ambient air plasma. Int. J. Adhes. Adhes. 2017;77:198–203. doi: 10.1016/j.ijadhadh.2017.05.004. DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace