Cold atmospheric pressure plasma: simple and efficient strategy for preparation of poly(2-oxazoline)-based coatings designed for biomedical applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32528062
PubMed Central
PMC7289869
DOI
10.1038/s41598-020-66423-w
PII: 10.1038/s41598-020-66423-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Poly(2-oxazolines) (POx) are an attractive material of choice for biocompatible and bioactive coatings in medical applications. To prepare POx coatings, the plasma polymerization represents a fast and facile approach that is surface-independent. However, unfavorable factors of this method such as using the low-pressure regimes and noble gases, or poor control over the resulting surface chemistry limit its utilization. Here, we propose to overcome these drawbacks by using well-defined POx-based copolymers prepared by living cationic polymerization as a starting material. Chemically inert polytetrafluoroethylene (PTFE) is selected as a substrate due to its beneficial features for medical applications. The deposited POx layer is additionally post-treated by non-equilibrium plasma generated at atmospheric pressure. For this purpose, diffuse coplanar surface barrier discharge (DCSBD) is used as a source of "cold" homogeneous plasma, as it is operating at atmospheric pressure even in ambient air. Prepared POx coatings possess hydrophilic nature with an achieved water contact angle of 60°, which is noticeably lower in comparison to the initial value of 106° for raw PTFE. Moreover, the increased fibroblasts adhesion in comparison to raw PTFE is achieved, and the physical and biological properties of the POx-modified surfaces remain stable for 30 days.
Zobrazit více v PubMed
MacGregor-Ramiasa MN, Vasilev K. Questions and Answers on the Wettability of Nano-Engineered Surfaces. Adv. Mater. Interfaces. 2017;4:1–24. doi: 10.1002/admi.201700381. DOI
Blakney AK, Swartzlander MD, Bryant SJ. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. - Part A. 2012;100 A:1375–1386. doi: 10.1002/jbm.a.34104. PubMed DOI PMC
Divandari M, et al. Topology Effects on the Structural and Physicochemical Properties of Polymer Brushes. Macromolecules. 2017;50:7760–7769. doi: 10.1021/acs.macromol.7b01720. DOI
Morgese G, et al. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew. Chemie - Int. Ed. 2018;57:11667–11672. doi: 10.1002/anie.201805620. PubMed DOI
Gabriel M, et al. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach. Bioconjug. Chem. 2016;27:1216–1221. doi: 10.1021/acs.bioconjchem.6b00047. PubMed DOI
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol. Rapid Commun. 2020;1900430:1–26. doi: 10.1002/marc.201900430. PubMed DOI
Bludau H, et al. POxylation as an alternative stealth coating for biomedical applications. Eur. Polym. J. 2017;88:679–688. doi: 10.1016/j.eurpolymj.2016.10.041. PubMed DOI PMC
Morgese G, Benetti EM. Polyoxazoline biointerfaces by surface grafting. Eur. Polym. J. 2017;88:470–485. doi: 10.1016/j.eurpolymj.2016.11.003. DOI
Luxenhofer R, et al. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J. Control. Release. 2011;153:73–82. doi: 10.1016/j.jconrel.2011.04.010. PubMed DOI PMC
Bauer M, et al. In vitro hemocompatibility and cytotoxicity study of poly(2-methyl-2-oxazoline) for biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2013;51:1816–1821. doi: 10.1002/pola.26564. DOI
Kronek J, Paulovičová E, Paulovičová L, Kroneková Z, Lustoň J. Immunomodulatory efficiency of poly(2-oxazolines) J. Mater. Sci. Mater. Med. 2012;23:1457–64. doi: 10.1007/s10856-012-4621-7. PubMed DOI
Kroneková Z, et al. Ex Vivo and In Vitro Studies on the Cytotoxicity and Immunomodulative Properties of Poly(2-isopropenyl-2-oxazoline) as a New Type of Biomedical Polymer. Macromol. Biosci. 2016;16:1200–1211. doi: 10.1002/mabi.201600016. PubMed DOI
Dworak A, et al. Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment. J. Mater. Sci. Mater. Med. 2014;25:1149–1163. doi: 10.1007/s10856-013-5135-7. PubMed DOI
Jordan R, Ulman A. Surface Initiated Living Cationic Polymerization of 2-Oxazolines. J. Am. Chem. Soc. 1998;120:243–247. doi: 10.1021/ja973392r. DOI
Zhang N, Steenackers M, Luxenhofer R, Jordan R. Bottle-Brush Brushes: Cylindrical Molecular Brushes of Poly(2-oxazoline) on Glassy Carbon. Macromolecules. 2009;42:5345–5351. doi: 10.1021/ma900329y. DOI
Chang BJ, et al. Surface-attached polymer monolayers for the control of endothelial cell adhesion. Colloids Surfaces A Physicochem. Eng. Asp. 2002;198–200:519–526. doi: 10.1016/S0927-7757(01)00952-9. DOI
Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl. Mater. Interfaces. 2011;3:3463–3471. doi: 10.1021/am200690s. PubMed DOI PMC
Schulz A, et al. Direct Photomodification of Polymer Surfaces: Unleashing the Potential of Aryl-Azide Copolymers. Adv. Funct. Mater. 2018;28:1–7. doi: 10.1002/adfm.201800976. DOI
He T, et al. Efficient and robust coatings using poly(2-methyl-2-oxazoline) and its copolymers for marine and bacterial fouling prevention. J. Polym. Sci. Part A Polym. Chem. 2016;54:275–283. doi: 10.1002/pola.27912. DOI
He T, et al. Stable pH responsive layer-by-layer assemblies of partially hydrolysed poly(2-ethyl-2-oxazoline) and poly(acrylic acid) for effective prevention of protein, cell and bacteria surface attachment. Colloids Surfaces B Biointerfaces. 2018;161:269–278. doi: 10.1016/j.colsurfb.2017.10.031. PubMed DOI
Bhatt S, Pulpytel J, Mirshahi M, Arefi-Khonsari F. Cell resistant peptidomimetic poly (2-ethyl-2-oxazoline) coatings developed by low pressure inductively excited pulsed plasma polymerization for biomedical purpose. Plasma Process. Polym. 2015;12:519–532. doi: 10.1002/ppap.201400169. DOI
Ramiasa MN, et al. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/c5cc00260e. PubMed DOI
Macgregor-Ramiasa MN, Cavallaro AA, Vasilev K. Properties and reactivity of polyoxazoline plasma polymer films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/c5tb00901d. PubMed DOI
Cavallaro AA, Macgregor-Ramiasa MN, Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based. Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI
Macgregor-Ramiasa M, et al. A platform for selective immuno-capture of cancer cells from urine. Biosens. Bioelectron. 2017;96:373–380. doi: 10.1016/j.bios.2017.02.011. PubMed DOI
Gonzalez Garcia LE, Macgregor-Ramiasa M, Visalakshan RM, Vasilev K. Protein Interactions with Nanoengineered Polyoxazoline Surfaces Generated via Plasma Deposition. Langmuir. 2017;33:7322–7331. doi: 10.1021/acs.langmuir.7b01279. PubMed DOI
Visalakshan RM, et al. Creating Nano-engineered Biomaterials with Well-Defined Surface Descriptors. ACS Appl. Nano Mater. 2018;1:2796–2807. doi: 10.1021/acsanm.8b00458. DOI
Macgregor MN, Michelmore A, Safizadeh Shirazi H, Whittle J, Vasilev K. Secrets of Plasma-Deposited Polyoxazoline Functionality Lie in the Plasma Phase. Chem. Mater. 2017;29:8047–8051. doi: 10.1021/acs.chemmater.7b03023. DOI
Cassady AI, Hidzir NM, Grøndahl L. Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. J. Appl. Polym. Sci. 2014;131(40533):1–14. doi: 10.1002/app.40533. DOI
Kelar J, Shekargoftar M, Krumpolec R, Homola T. Activation of polycarbonate (PC) surfaces by atmospheric pressure plasma in ambient air. Polym. Test. 2018;67:428–434. doi: 10.1016/j.polymertesting.2018.03.027. DOI
Černák M, Černáková L, Hudec I, Kováčik D, Zahoranová A. Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009;47:22806. doi: 10.1051/epjap/2009131. DOI
Černák M, et al. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion. 2011;53:124031. doi: 10.1088/0741-3335/53/12/124031. DOI
Zahoranová A, et al. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process. 2018;38:969–988. doi: 10.1007/s11090-018-9913-3. DOI
Šrámková P, Zahoranová A, Kroneková Z, Šišková A, Kronek J. Poly(2-oxazoline) hydrogels by photoinduced thiol-ene “click” reaction using different dithiol crosslinkers. J. Polym. Res. 2017;24:82. doi: 10.1007/s10965-017-1237-0. DOI
Dargaville TR, Lava K, Verbraeken B, Hoogenboom R. Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules. 2016;49:4774–4783. doi: 10.1021/acs.macromol.6b00167. DOI
Farrugia BL, Kempe K, Schubert US, Hoogenboom R, Dargaville TR. Poly(2-oxazoline) Hydrogels for Controlled Fibroblast Attachment. Biomacromolecules. 2013;14:2724–2732. doi: 10.1021/bm400518h. PubMed DOI
Tučeková Z, Koval’ová Z, Zahoranová A, Machala Z, Černák M. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge. Eur. Phys. J. Appl. Phys. 2016;75:24711. doi: 10.1051/epjap/2016150590. DOI
Krumpolec R, Cameron DC, Homola T, Černák M. Surface chemistry and initial growth of Al 2 O 3 on plasma modified PTFE studied by ALD. Surfaces and Interfaces. 2017;6:223–228. doi: 10.1016/j.surfin.2016.10.005. DOI
Károly Z, et al. Effect of Atmospheric Cold Plasma Treatment on the Adhesion and Tribological Properties of Polyamide 66 and Poly(Tetrafluoroethylene) Materials (Basel). 2019;12:658. doi: 10.3390/ma12040658. PubMed DOI PMC
Pavliňák D, et al. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges. Appl. Phys. Lett. 2014;105:154102. doi: 10.1063/1.4898134. DOI
Tóth A, et al. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma. Open Chem. 2015;13:557–563. doi: 10.1515/chem-2015-0072. DOI
Jordan R, Martin K, Räder HJ, Unger KK. Lipopolymers for Surface Functionalizations. 1. Synthesis and Characterization of Terminal Functionalized Poly(N -propionylethylenimine)s. Macromolecules. 2001;34:8858–8865. doi: 10.1021/ma011573e. DOI
Gulyuz S, et al. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline)-based amphiphilic block copolymers prepared by CuAAC click chemistry. Express Polym. Lett. 2018;12:146–158. doi: 10.3144/expresspolymlett.2018.13. DOI
Van Guyse JFR, et al. Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:31356–31366. doi: 10.1021/acsami.9b09999. PubMed DOI
MacGregor M, Sinha U, Visalakshan RM, Cavallaro A, Vasilev K. Preserving the reactivity of coatings plasma deposited from oxazoline precursors − An in depth study. Plasma Process. Polym. 2019;16:1–12. doi: 10.1002/ppap.201800130. DOI
Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: Possible solutions to overcome foreign body response. AAPS Journal. 2010;12:188–196. doi: 10.1208/s12248-010-9175-3. PubMed DOI PMC
Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7:55–70. doi: 10.1089/107632700300003297. PubMed DOI
Heitz J, et al. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere. J. Biomed. Mater. Res. Part A. 2003;67A:130–137. doi: 10.1002/jbm.a.10043. PubMed DOI
Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z. & Svorcik, V. Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Jpn. J. Appl. Phys. 56, 06GG03, 1–6, 10.1002/jbm.a.10043 (2017).
Slepička P, Kasálková NS, Stránská E, Bačáková L, Švorčík V. Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 2013;7:535–545. doi: 10.3144/expresspolymlett.2013.50. DOI
de la Rosa VR. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014;25:1211–25. doi: 10.1007/s10856-013-5034-y. PubMed DOI
Lorson T, et al. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–280. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI
Weydert S, et al. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. Langmuir. 2017;33:8594–8605. doi: 10.1021/acs.langmuir.7b01437. PubMed DOI
Zhang N, et al. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion. Macromol. Biosci. 2012;12:926–936. doi: 10.1002/mabi.201200026. PubMed DOI
Macgregor, M. & Vasilev, K. Perspective on plasma polymers for applied biomaterials nanoengineering and the recent rise of oxazolines. Materials (Basel). 12, 10.3390/ma12010191 (2019) PubMed PMC
Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B. 1998;102:426–436. doi: 10.1021/jp972635z. DOI
Pertsin AJ, Grunze M. Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir. 2000;16:8829–8841. doi: 10.1021/la000340y. DOI
Desmet T, et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI
Lee JH, Khang G, Lee JW, Lee HB. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J. Colloid Interface Sci. 1998;205:323–330. doi: 10.1006/jcis.1998.5688. PubMed DOI
Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007;28:2175–2182. doi: 10.1016/j.biomaterials.2007.01.019. PubMed DOI
Krumpolec R, Čech J, Jurmanová J, Ďurina P, Černák M. Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen. Surf. Coatings Technol. 2017;309:301–308. doi: 10.1016/j.surfcoat.2016.11.036. DOI
Galmiz, O., Zemánek, M., Pavliňák, D. & Černák, M. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes. J. Phys. D. Appl. Phys. 51, 10.1088/1361-6463/aabb49 (2018)
Galmiz O, et al. Effect of atmospheric pressure plasma on surface modification of paper. AIP Adv. 2019;9:105013. doi: 10.1063/1.5124149. DOI
Štěpánová V, et al. Surface modification of natural leather using diffuse ambient air plasma. Int. J. Adhes. Adhes. 2017;77:198–203. doi: 10.1016/j.ijadhadh.2017.05.004. DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC