The Ubiquitin-Proteasome System Does Not Regulate the Degradation of Porcine β-Microseminoprotein during Sperm Capacitation
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA-18-11275S
Grantová Agentura České Republiky
2015-67015-23231
USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative Competitive Grant
SV18-08-21230
Internal Grant Agency of Czech University of Life Sciences in Prague
CZ.1.05/1.1.00/02.0109
BIOCEV from ERDF
RVO: 86652036
Institute of Biotechnology
U42 OD011140
NIH Office of Research Infrastructure Programs
PubMed
32532042
PubMed Central
PMC7312034
DOI
10.3390/ijms21114151
PII: ijms21114151
Knihovny.cz E-resources
- Keywords
- MSMB, PSP94, boar, capacitation, spermatozoa, ubiquitin-proteasome system, β-microseminoprotein,
- MeSH
- Sperm Capacitation physiology MeSH
- Swine MeSH
- Proteasome Endopeptidase Complex metabolism MeSH
- Prostatic Secretory Proteins metabolism MeSH
- Spermatozoa metabolism physiology MeSH
- Ubiquitin metabolism MeSH
- Ubiquitination MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- beta-microseminoprotein MeSH Browser
- Proteasome Endopeptidase Complex MeSH
- Prostatic Secretory Proteins MeSH
- Ubiquitin MeSH
Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS. Alterations in the sperm surface protein composition also relate to the porcine β-microseminoprotein (MSMB/PSP94), seminal plasma protein known as immunoglobulin-binding factor, and motility inhibitor. MSMB was detected in the acrosomal region as well as the flagellum of ejaculated boar spermatozoa, while the signal disappeared from the acrosomal region after in vitro capacitation (IVC). The involvement of UPS in the MSMB degradation during sperm IVC was studied using proteasomal interference and ubiquitin-activating enzyme (E1) inhibiting conditions by image-based flow cytometry and Western blot detection. Our results showed no accumulation of porcine MSMB either under proteasomal inhibition or under E1 inhibiting conditions. In addition, the immunoprecipitation study did not detect any ubiquitination of sperm MSMB nor was MSMB detected in the affinity-purified fraction containing ubiquitinated sperm proteins. Based on our results, we conclude that UPS does not appear to be the regulatory mechanism in the case of MSMB and opening new questions for further studies. Thus, the capacitation-induced processing of seminal plasma proteins on the sperm surface may be more complex than previously thought, employing multiple proteolytic systems in a non-redundant manner.
Department of Obstetrics Gynecology and Women's Health University of Missouri Columbia MO 65211 USA
Division of Animal Sciences University of Missouri Columbia MO 65211 USA
See more in PubMed
De Lamirande E., Leclerc P., Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol. Hum. Reprod. 1997;3:175–194. doi: 10.1093/molehr/3.3.175. PubMed DOI
Yanagimachi R. Mammalian fertilization. In: Knobil E., Neill J.D., editors. The Physiology of Reproduction. 2nd ed. Volume 1. Raven Press; New York, NY, USA: 1994. pp. 189–317.
Jonáková V., Ticha M. Boar Seminal Plasma Proteins and Their Binding Properties. A Review. Collect. Czechoslov. Chem. Commun. 2004;69:461–475. doi: 10.1135/cccc20040461. DOI
Jonáková V., Jonak J., Ticha M. Proteomics of Male Seminal Plasma. In: Jiang Z., Ott T.L., editors. Reproductive Genomics in Domestic Animals. 1st ed. Blackwell Publishing; Oxford, UK: 2010. pp. 339–366.
Ickowicz D., Finkelstein M., Breitbart H. Mechanism of sperm capacitation and the acrosome reaction: Role of protein kinases. Asian J. Androl. 2012;14:816–821. doi: 10.1038/aja.2012.81. PubMed DOI PMC
Kamada M., Mori H., Maeda N., Yamamoto S., Kunimi K., Takikawa M., Maegawa M., Aono T., Futaki S., Koide S.S. β-Microseminoprotein/prostatic secretory protein is a member of immunoglobulin binding factor family. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1998;1388:101–110. doi: 10.1016/s0167-4838(98)00164-2. PubMed DOI
Chao C.F., Chiou S.T., Jeng H., Chang W.C. The Porcine Sperm Motility Inhibitor Is Identical to β-Microseminoprotein and Is a Competitive Inhibitor of Na+,K+-ATPase. Biochem. Biophys. Res. Commun. 1996;218:623–628. doi: 10.1006/bbrc.1996.0110. PubMed DOI
Lazure C., Villemure M., Gauthier D., Naudé R.J., Mbikay M. Characterization of ostrich (Struthio camelus) β-microseminoprotein (MSP): Ideication of homologous sequences in EST databases and analysis of their evolution during speciation. Protein Sci. 2001;10:2207–2218. doi: 10.1110/ps.06501. PubMed DOI PMC
Akiyama K., Yoshioka Y., Schmid K., Offner G., Troxler R.F., Tsuda R., Hara M. The amino acid sequence of human β-microseminoprotein. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1985;829:288–294. doi: 10.1016/0167-4838(85)90200-6. PubMed DOI
Wang I., Yu T.A., Wu S.H., Chang W.C., Chen C. Disulfide pairings and secondary structure of porcine β-microseminoprotein. FEBS Lett. 2003;541:80–84. doi: 10.1016/s0014-5793(03)00308-9. PubMed DOI
Franchi N.A., Avendaño C., Molina R.I., Tissera A.D., Maldonado C.A., Oehninger S., Coronel C.E. β-Microseminoprotein in human spermatozoa and its potential role in male fertility. Reproduction. 2008;136:157–166. doi: 10.1530/REP-08-0032. PubMed DOI
Weiber H., Borch K., Sundler F., Fernlund P. β-Microseminoprotein in Gastric Carcinoids: A Marker of Tumour Progression. Digestion. 1999;60:440–448. doi: 10.1159/000007689. PubMed DOI
Stott-Miller M., Wright J.L., Stanford J.L. MSMB gene variant alters the association between prostate cancer and number of sexual partners. Prostate. 2013;73:1803–1809. doi: 10.1002/pros.22719. PubMed DOI PMC
Sjoblom L., Saramäki O., Annala M., Leinonen K., Nättinen J., Tolonen T., Wahlfors T., Nykter M., Bova G.S., Schleutker J., et al. Microseminoprotein-Beta Expression in Different Stages of Prostate Cancer. PLoS ONE. 2016;11:e0150241. doi: 10.1371/journal.pone.0150241. PubMed DOI PMC
Bergström S.H., Järemo H., Nilsson M., Adamo H.H., Bergh A. Prostate tumors downregulate microseminoprotein-beta (MSMB) in the surrounding benign prostate epithelium and this response is associated with tumor aggressiveness. Prostate. 2017;78:257–265. doi: 10.1002/pros.23466. PubMed DOI
Smith Byrne K., Appleby P.N., Key T.J., Holmes M.V., Fensom G.K., Agudo A., Ardanaz E., Boeing H., Bueno-De-Mesquita H.B., Chirlaque M.D., et al. The role of plasma microseminoprotein-beta in prostate cancer: An observational nested case–control and Mendelian randomization study in the European prospective investigation into cancer and nutrition. Ann. Oncol. 2019;30:983–989. doi: 10.1093/annonc/mdz121. PubMed DOI PMC
Anklesaria J.H., Kulkarni B.J., Pathak B.R., Mahale S.D. Identification of CRISP2 from human sperm as PSP94-binding protein and generation of CRISP2-specific anti-peptide antibodies. J. Pept. Sci. 2016;22:383–390. doi: 10.1002/psc.2878. PubMed DOI
Da Ros V.G., Muñoz M.W., Battistone M.A., Brukman N.G., Carvajal G., Curci L., Gómez-Elías M.D., Cohen D.J., Cuasnicu P.S. From the Epididymis to the Egg: Participation of CRISP Proteins in Mammalian Fertilization. Asian J. Androl. 2015;17:711–715. doi: 10.4103/1008-682X.155769. PubMed DOI PMC
Jeng H., Chu H.H., Cheng W.T., Chang W.C., Su S.J. Secretory origin and temporal appearance of the porcine β-microseminoprotein (sperm motility inhibitor) in the boar reproductive system. Mol. Reprod. Dev. 2000;58:63–68. doi: 10.1002/1098-2795(200101)58:13.0.co;2-h. PubMed DOI
Postlerova P., Liberda J., Tichá M., Jonáková V. Isolation of non-heparin-binding and heparin-binding proteins of boar prostate. J. Chromatogr. B. 2002;770:137–143. doi: 10.1016/s0378-4347(01)00480-7. PubMed DOI
Maňásková P., Ryslava H., Ticha M., Jonáková V. Characterization of Proteins from Boar Prostate. Am. J. Reprod. Immunol. 2002;48:283–290. doi: 10.1034/j.1600-0897.2002.01138.x. PubMed DOI
Postlerova P., Davidová N., Sulc M., Philimonenko A., Hozak P., Jonáková V. Reproductive tissue expression and sperm localization of porcine beta-microseminoprotein. Cell. Tissue. Res. 2011;344:341–353. doi: 10.1007/s00441-011-1149-y. PubMed DOI
Jeng H., Liu K.M., Chang W.C. Purification and Characterization of Reversible Sperm Motility Inhibitors from Porcine Seminal Plasma. Biochem. Biophys. Res. Commun. 1993;191:435–440. doi: 10.1006/bbrc.1993.1236. PubMed DOI
Yi Y.J., Zimmerman S.W., Manandhar G., Odhiambo J.F., Kennedy C., Jonáková V., Maňásková-Postlerová P., Sutovsky M., Park C.S., Sutovsky P. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. Int. J. Androl. 2011;35:196–210. doi: 10.1111/j.1365-2605.2011.01217.x. PubMed DOI
Zigo M., Jonakova V., Manaskova-Postlerova P., Kerns K., Sutovsky P. Ubiquitin-proteasome system participates in the de-aggregation of spermadhesins and DQH protein during boar sperm capacitation. Reproduction. 2019;157:283–295. doi: 10.1530/rep-18-0413. PubMed DOI
Glickman M.H., Ciechanover A. The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Physiol. Rev. 2002;82:373–428. doi: 10.1152/physrev.00027.2001. PubMed DOI
Sutovsky P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microsc. Res. Tech. 2003;61:88–102. doi: 10.1002/jemt.10319. PubMed DOI
Sutovsky P. Sperm proteasome and fertilization. Reproduction. 2011;142:1–14. doi: 10.1530/rep-11-0041. PubMed DOI
Kerns K., Morales P., Sutovsky P. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology. Biol. Reprod. 2016;94:117. doi: 10.1095/biolreprod.115.136622. PubMed DOI
Sutovsky P., Moreno R., Ramalho-Santos J., Dominko T., Thompson E.W.E., Schatten G. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 2001;114:1665–1675. PubMed
Zimmerman S.W., Manandhar G., Yi Y.-J., Gupta S.K., Sutovsky M., Odhiambo J.F., Powell M.D., Miller D.J., Sutovsky P. Sperm Proteasomes Degrade Sperm Receptor on the Egg Zona Pellucida during Mammalian Fertilization. PLoS ONE. 2011;6:e17256. doi: 10.1371/journal.pone.0017256. PubMed DOI PMC
Miles E.L., O’Gorman C., Zhao J., Samuel M., Walters E., Yi Y.-J., Sutovsky M., Prather R.S., Wells K.D., Sutovsky P. Transgenic pig carrying green fluorescent proteasomes. Proc. Natl. Acad. Sci. USA. 2013;110:6334–6339. doi: 10.1073/pnas.1220910110. PubMed DOI PMC
Kong M., Diaz E.S., Morales P. Participation of the Human Sperm Proteasome in the Capacitation Process and Its Regulation by Protein Kinase A and Tyrosine Kinase. Biol. Reprod. 2009;80:1026–1035. doi: 10.1095/biolreprod.108.073924. PubMed DOI
Hillman P., Ickowicz D., Vizel R., Breitbart H. Dissociation between AKAP3 and PKARII Promotes AKAP3 Degradation in Sperm Capacitation. PLoS ONE. 2013;8:e68873. doi: 10.1371/journal.pone.0068873. PubMed DOI PMC
Zigo M., Manaskova-Postlerova P., Jonakova V., Kerns K., Sutovsky P. Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep. 2019;9:1–18. doi: 10.1038/s41598-019-49024-0. PubMed DOI PMC
Kerns K., Zigo M., Drobnis E.Z., Sutovsky M., Sutovsky P. Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 2018;9:2061. doi: 10.1038/s41467-018-04523-y. PubMed DOI PMC
Kennedy C.E., Krieger K.B., Sutovsky M., Xu W., Vargovič P., Didion B.A., Ellersieck M.R., Hennessy M.E., Verstegen J., Oko R., et al. Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reprod. Dev. 2014;81:436–449. doi: 10.1002/mrd.22309. PubMed DOI
Sutovsky P. Visualization of Sperm Accessory Structures in the Mammalian Spermatids, Spermatozoa, and Zygotes by Immunofluorescence, Confocal, and Immunoelectron Microscopy. In: Schatten H., editor. Germ Cell Protocols. Methods in Molecular Biology™. Volume 253. Humana Press; Totowa, NJ, USA: 2004. pp. 59–77. PubMed DOI