Heptabladed β-propeller lectins PLL2 and PHL from Photorhabdus spp. recognize O-methylated sugars and influence the host immune system
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32559333
DOI
10.1111/febs.15457
Knihovny.cz E-resources
- Keywords
- Photorhabdus, O-methylation, lectin, phenoloxidase, reactive oxygen species,
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Sugars metabolism MeSH
- Gram-Negative Bacterial Infections immunology metabolism microbiology MeSH
- Hemocytes immunology metabolism MeSH
- Hemolymph immunology metabolism MeSH
- Immunity immunology MeSH
- Immune System immunology metabolism MeSH
- Host-Pathogen Interactions immunology MeSH
- Lectins chemistry metabolism MeSH
- Humans MeSH
- Methylation MeSH
- Moths MeSH
- Photorhabdus immunology metabolism physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Sugars MeSH
- Lectins MeSH
O-methylation is an unusual sugar modification with a function that is not fully understood. Given its occurrence and recognition by lectins involved in the immune response, methylated sugars were proposed to represent a conserved pathogen-associated molecular pattern. We describe the interaction of O-methylated saccharides with two β-propeller lectins, the newly described PLL2 from the entomopathogenic bacterium Photorhabdus laumondii, and its homologue PHL from the related human pathogen Photorhabdus asymbiotica. The crystal structures of PLL2 and PHL revealed up to 10 out of 14 potential binding sites per protein subunit to be occupied with O-methylated structures. The avidity effect strengthens the interaction by 4 orders of magnitude. PLL2 and PHL also interfere with the early immune response by modulating the production of reactive oxygen species and phenoloxidase activity. Since bacteria from Photorhabdus spp. have a complex life cycle involving pathogenicity towards different hosts, the involvement of PLL2 and PHL might contribute to the pathogen overcoming insect and human immune system defences in the early stages of infection. DATABASES: Structural data are available in PDB database under the accession numbers 6RG2, 6RGG, 6RFZ, 6RG1, 6RGU, 6RGW, 6RGJ, and 6RGR.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
N D Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow Russia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
See more in PubMed
Mayer S, Raulf M-K & Lepenies B (2017) C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 147, 223-237.
Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58, 102-118.
Staudacher E (2012) Methylation - an uncommon modification of glycans. Biol Chem 393, 675-685.
Sommer R, Makshakova ON, Wohlschlager T, Hutin S, Marsh M, Titz A, Künzler M & Varrot A (2018) Crystal structures of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune defense. Structure 26, 391-402.e4.
Wohlschlager T, Butschi A, Grassi P, Sutov G, Gauss R, Hauck D, Schmieder SS, Knobel M, Titz A, Dell A et al. (2014) Methylated glycans as conserved targets of animal and fungal innate defense. Proc Natl Acad Sci USA 111, E2787-E2796.
Adeolu M, Alnajar S, Naushad S, S. Gupta R(2016) Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66, 5575-5599.
Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L, Ruiz C, Zhang X, Robert CAM, Karimi J, Kamali S et al. (2018) Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 68, 2664-2681.
Clarke DJ (2014) The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. Adv Appl Microbiol 88, 1-29.
Waterfield NR, Ciche T & Clarke D (2009) Photorhabdus and a Host of Hosts. Annu Rev Microbiol 63, 557-574.
Goodrich-Blair H & Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64, 260-268.
Forst S, Dowds B, Boemare N & Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51, 47-72.
Forst S & Nealson K (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60, 21-43.
Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles J-F et al. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21, 1307-1313.
Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim K, Clardy J & Ciche TA (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337, 88-93.
Inman FL, Singh S & Holmes LD (2012) Mass production of the beneficial nematode Heterorhabditis bacteriophora and its bacterial symbiont Photorhabdus luminescens. Indian J Microbiol 52, 316-324.
Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56, 623-633.
Costa SCP, Girard PA, Brehélin M & Zumbihl R (2009) The emerging human pathogen Photorhabdus asymbiotica is a facultative intracellular bacterium and induces apoptosis of macrophage-like cells. Infect Immun 77, 1022-1030.
Gerrard J, Waterfield N, Vohra R & ffrench-Constant R(2004) Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect 6, 229-237.
Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282, 2753-2764.
Imberty A & Varrot A (2008) Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol 18, 567-576.
Duret S, Batailler B, Dubrana M-P, Saillard C, Renaudin J, Béven L & Arricau-Bouvery N (2014) Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 16, 1119-1132.
Bulgheresi S, Schabussova I, Chen T, Mullin NP, Maizels RM & Ott JA (2006) A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiont acquisition by a marine nematode. Appl Environ Microbiol 72, 2950-2956.
Kumar A, Sýkorová P, Demo G, Dobeš P, Hyršl P & Wimmerová M (2016) A novel fucose-binding lectin from Photorhabdus luminescens (PLL) with an Unusual heptabladed β-propeller tetrameric structure. J Biol Chem 291, 25032-25049.
Jančaříková G, Houser J, Dobeš P, Demo G, Hyršl P & Wimmerová M (2017) Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog 13, e1006564.
Haine ER, Moret Y, Siva-Jothy MT & Rolff J (2008) Antimicrobial defense and persistent infection in insects. Science 322, 1257-1259.
Wang Z, Wilhelmsson C, Hyrsl P, Loof TG, Dobes P, Klupp M, Loseva O, Mörgelin M, Iklé J, Cripps RM et al. (2010) Pathogen entrapment by transglutaminase-a conserved early innate immune mechanism. PLoS Pathog 6, e1000763.
Cerenius L & Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198, 116-126.
Nappi AJ & Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35, 443-459.
Cerenius L, Lee BL & Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29, 263-271.
Thomas DC (2017) The phagocyte respiratory burst: historical perspectives and recent advances. Immunol Lett 192, 88-96.
Brautigam CA (2015) Calculations and publication-quality illustrations for analytical ultracentrifugation data. Meth Enzymol 562, 109-133.
Hunter SW, Fujiwara T & Brennan PJ (1982) Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J Biol Chem 257, 15072-15078.
Zhang J, Chatterjee D, Brennan PJ, Spencer JS & Liav A (2010) A modified synthesis and serological evaluation of neoglycoproteins containing the natural disaccharide of PGL-I from Mycobacterium leprae. Bioorg Med Chem Lett 20, 3250-3253.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J et al. (2014) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539.
Sharon N (1987) Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett 217, 145-157.
Wimmerová M, Kozmon S, Nečasová I, Mishra SK, Komárek J & Koča J (2012) Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods. PLoS One 7, e46032.
Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL & Woolfson DN (2015) Carbohydrate-Aromatic Interactions in Proteins. J Am Chem Soc 137, 15152-15160.
Raju RK, Ramraj A, Vincent MA, Hillier IH & Burton NA (2008) Carbohydrate-protein recognition probed by density functional theory and ab initio calculations including dispersive interactions. Phys Chem Chem Phys 10, 6500-6508.
Weis WI & Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65, 441-473.
Jančaříková G, Herczeg M, Fujdiarová E, Houser J, Kövér KE, Borbás A, Wimmerová M & Csávás M (2018) Synthesis of α-l-fucopyranoside-presenting glycoclusters and investigation of their interaction with Photorhabdus asymbiotica lectin (PHL). Chemistry 24, 4055-4068.
Capaldi S, Faggion B, Carrizo ME, Destefanis L, Gonzalez MC, Perduca M, Bovi M, Galliano M & Monaco HL (2015) Three-dimensional structure and ligand-binding site of carp fishelectin (FEL). Acta Crystallogr D Biol Crystallogr 71, 1123-1135.
Wimmerova M, Mitchell E, Sanchez J-F, Gautier C & Imberty A (2003) Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278, 27059-27067.
Kostlánová N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M, Gilboa-Garber N, Chambat G, Wimmerová M & Imberty A (2005) The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280, 27839-27849.
Houser J, Komarek J, Kostlanova N, Cioci G, Varrot A, Kerr SC, Lahmann M, Balloy V, Fahy JV, Chignard M et al. (2013) A soluble fucose-specific lectin from Aspergillus fumigatus conidia - structure, specificity and possible role in fungal pathogenicity. PLoS One 8, e83077.
Zhao P, Lu Z, Strand MR & Jiang H (2011) Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response. Insect Biochem Mol Biol 41, 645-652.
Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH & Reynolds SE(2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104, 2419-2424.
Song CJ, Seo S, Shrestha S & Kim Y (2011) Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J Microbiol Biotechnol 21, 317-322.
Hyrsl P, Dobes P, Wang Z, Hauling T, Wilhelmsson C & Theopold U (2011) Clotting factors and eicosanoids protect against nematode infections. J Innate Immun 3, 65-70.
Held KG, LaRock CN, D’Argenio DA, Berg CA & Collins CM (2007) A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 73, 7622-7628.
Dubovskii IM, Grizanova EV, Chertkova EA, Slepneva IA, Komarov DA, Vorontsova YL & Glupov VV (2010) Generation of reactive oxygen species and activity of antioxidants in hemolymph of the moth larvae Galleria mellonella (L.) (Lepidoptera: Piralidae) at development of the process of encapsulation. J Evol Biochem Phys 46, 35-43.
Zug R & Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6, 1201.
Gay NJ, Symmons MF, Gangloff M & Bryant CE (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14, 546-558.
Makni-Maalej K, Chiandotto M, Hurtado-Nedelec M, Bedouhene S, Gougerot-Pocidalo M-A, Dang PM-C & El-Benna J (2013) Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochem Pharmacol 85, 92-100.
Kondakov NN, Mel'nikova TM, Chekryzhova TV, Mel'nikova MV, Zinin AI, Torgov VI, Chizhov AO & Kononov LO(2015) Synthesis of a disaccharide of phenolic glycolipid from Mycobacterium leprae (PGL-I) and its conjugates with bovine serum albumin. Russ Chem Bull 64, 1142-1148.
Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215, 403-410.
Wiseman T, Williston S, Brandts JF & Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179, 131-137.
Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606-1619.
Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G & Weiss MS (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat 19, 442-449.
Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66, 125-132.
Krug M, Weiss MS, Heinemann U & Mueller U (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J Appl Crystallogr 45, 568-572.
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al. (2011) Overview of the CCP 4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242.
Vagin A & Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66, 22-25.
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-367.
Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.
Lebedev AA, Young P, Isupov MN, Moroz OV, Vagin AA & Murshudov GN (2012) JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr D Biol Crystallogr 68, 431-440.
Laughton AM & Siva-Jothy MT (2011) A standardised protocol for measuring phenoloxidase and prophenoloxidase in the honey bee, Apis mellifera. Apidologie 42, 140-149.
Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family