Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
186094
Swiss National Science Foundation - Switzerland
23-06457S
Grantová Agentura České Republiky
PubMed
39020388
PubMed Central
PMC11256433
DOI
10.1186/s40851-024-00235-y
PII: 10.1186/s40851-024-00235-y
Knihovny.cz E-zdroje
- Klíčová slova
- Beneficial microorganisms, Biological control agents, Entomopathogens, Phylogeny, Systematics, Taxonomy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.
Zobrazit více v PubMed
Poinar G. Nematodes for Biological Control of insects. Fla: CRCPress. Inc Boca Raton; 1979. p. 277.
Boemare N, Akhurst R, Mourant R. DNA relatedness between Xenorhabdus spp.(Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. Nov. Int J Syst Bacteriol. 1993;43:249–55. doi: 10.1099/00207713-43-2-249. DOI
Bovien P. Some types of association between nematodes and insects. 1937.
Khan A, Brooks W, Hirschmann H. Chromonema heliothidis n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis Zea (Noctuidae, Lepidoptera), and other insects. J Nematology. 1976;8:159. PubMed PMC
Dutky SR. Investigation of the diseases of the immature stages of the Japanese beetle. 1937.
Ogier J-C, Akhurst R, Boemare N, Gaudriault S. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends Microbiol. 2023;31:629–43. doi: 10.1016/j.tim.2023.01.004. PubMed DOI
Ogier J-C, Pagès S, Frayssinet M, Gaudriault S. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome. 2020;8:1–17. doi: 10.1186/s40168-020-00800-5. PubMed DOI PMC
Ruiu L, Marche MG, Mura ME, Tarasco E. Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Pest Manag Sci. 2022;78:5437–43. doi: 10.1002/ps.7166. PubMed DOI PMC
Zwyssig M, Spescha A, Patt T, Belosevic A, Machado RA, Regaiolo A et al. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria. ISME J. 2024;wrae028. PubMed PMC
Akhurst R, Boemare N. Biology and taxonomy of Xenorhabdus. Entomopathogenic nematodes in biological control. CRC; 1990. pp. 75–90.
Stock SP. Partners in crime: symbiont-assisted resource acquisition in Steinernema entomopathogenic nematodes. Curr Opin Insect Sci. 2019;32:22–7. doi: 10.1016/j.cois.2018.10.006. PubMed DOI
Griffin C, Boemare N, Lewis E. Biology and behaviour. Nematodes as Biocontrol Agents. 2005;47–64.
Dowds BC, Peters A. Virulence mechanisms. Entomopathogenic nematology. CABI publishing Wallingford UK; 2002. pp. 79–98.
Půža V. Control of insect pests by entomopathogenic nematodes. Principles of plant-microbe interactions. Springer; 2015. pp. 175–83.
Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim K, et al. A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science. 2012;337:88–93. doi: 10.1126/science.1216641. PubMed DOI PMC
Haag ES, Fitch DH, Delattre M. From the worm to the worms and back again: the evolutionary developmental biology of nematodes. Genetics. 2018;210:397–433. doi: 10.1534/genetics.118.300243. PubMed DOI PMC
Laumond C, Mauleon H, Kermarrec A. [New data on the host spectrum and the parasitism of the entomophagous nematode, Neoaplectana carpocapsae [biological control]].[French] Entomophaga. 1979;24:13–27. doi: 10.1007/BF02377505. DOI
Woodring JL, Kaya HK. Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Southern cooperative series bulletin (USA), Arkansas Agricultural Experiment Station. 1988.
Bathon H. Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Sci Technol. 1996;6:421–34. doi: 10.1080/09583159631398. DOI
Piedra-Buena A, López-Cepero J, Campos-Herrera R. Entomopathogenic nematode production and application: regulation, ecological impact and non–target effects. Nematode pathogenesis of insects and other pests: Ecology and Applied technologies for sustainable plant and Crop Protection. Springer; 2015. pp. 255–82.
Ehlers R-U, Hokkanen H. Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp.): conclusions and recommendations of a combined OECD and COST workshop on scientific and regulatory policy issues. Biocontrol Sci Technol. 1996;6:295–302. doi: 10.1080/09583159631280. DOI
Kaya HK, Gaugler R. Entomopathogenic nematodes. Ann Rev Entomol. 1993;38:181–206. doi: 10.1146/annurev.en.38.010193.001145. DOI
Bruno P, Machado RA, Glauser G, Köhler A, Campos-Herrera R, Bernal J, et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci Rep. 2020;10:8257. doi: 10.1038/s41598-020-64945-x. PubMed DOI PMC
Machado RA, Thönen L, Arce CC, Theepan V, Prada F, Wüthrich D, et al. Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat Biotechnol. 2020;38:600–8. doi: 10.1038/s41587-020-0419-1. PubMed DOI
Daborn P, Waterfield N, Silva C, Au C, Sharma S, Ffrench-Constant R. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci. 2002;99:10742–7. doi: 10.1073/pnas.102068099. PubMed DOI PMC
Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol. 2009;13:224–30. doi: 10.1016/j.cbpa.2009.02.037. PubMed DOI
Fujdiarová E, Houser J, Dobeš P, Paulíková G, Kondakov N, Kononov L, et al. Heptabladed β-propeller lectins PLL2 and PHL from Photorhabdus spp. recognize O‐methylated sugars and influence the host immune system. FEBS J. 2021;288:1343–65. doi: 10.1111/febs.15457. PubMed DOI
Cimen H, Touray M, Gulsen SH, Hazir S. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Appl Microbiol Biotechnol. 2022;106:4387–99. doi: 10.1007/s00253-022-12023-9. PubMed DOI
Půža V, Tarasco E. Interactions between entomopathogenic fungi and entomopathogenic nematodes. Microorganisms. 2023;11:163. doi: 10.3390/microorganisms11010163. PubMed DOI PMC
Wollenberg AC, Jagdish T, Slough G, Hoinville ME, Wollenberg MS. Death becomes them: bacterial community dynamics and stilbene antibiotic production in cadavers of Galleria mellonella killed by Heterorhabditis and Photorhabdus spp. Applied and environmental microbiology. 2016;82:5824–37. PubMed PMC
Baur M, Kaya H, Strong D. Foraging ants as scavengers on entomopathogenic nematode-killed insects. Biol Control. 1998;12:231–6. doi: 10.1006/bcon.1998.0635. DOI
Foltan P, Puza V. To complete their life cycle, pathogenic nematode–bacteria complexes deter scavengers from feeding on their host cadaver. Behav Process. 2009;80:76–9. doi: 10.1016/j.beproc.2008.09.012. PubMed DOI
Gulcu B, Hazir S, Kaya HK. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J Invertebr Pathol. 2012;110:326–33. doi: 10.1016/j.jip.2012.03.014. PubMed DOI
Hunt DJ, Subbotin SA. Taxonomy and systematics. Advances in entomopathogenic nematode taxonomy and phylogeny. Brill; 2016. pp. 13–58.
Nemys eds. Nemys: World Database of Nematodes. Accessed at https://nemys.ugent.be on 2023-12-13. 2023.
Adams BJ. Species concepts and the evolutionary paradigm in modem nematology. J Nematology. 1998;30:1. PubMed PMC
Spiridonov SE, Reid AP, Podrucka K, Subbotin SA, Moens M. Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8 S-ITS2 region of rDNA and morphological features. Nematology. 2004;6:547–66. doi: 10.1163/1568541042665304. DOI
Adams BJ, Peat SM, Dillman AR. Phylogeny and evolution. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Brill; 2007. pp. 693–733.
Půža V, Chundelová D, Nermuť J, Žurovcová M, Mráček Z. Intra-individual variability of ITS regions in entomopathogenic nematodes (Steinernematidae: Nematoda): implications for their taxonomy. Biocontrol. 2015;60:547–54. doi: 10.1007/s10526-015-9664-5. DOI
Nguyen KB. Methodology, morphology and identification. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Brill; 2007. pp. 59–119.
Lis M, Sajnaga E, Skowronek M, Wiater A, Rachwał K, Kazimierczak W. Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Poland. J Nematology. 2021;53:1–24. doi: 10.21307/jofnem-2021-051. PubMed DOI PMC
Bhat AH, Machado RA, Abolafia J, Askary TH, Půža V, Ruiz-Cuenca AN et al. Multigene sequence-based and phenotypic characterization reveals the occurrence of a Novel Entomopathogenic Nematode species, Steinernema anantnagense n. sp. J Nematology. 2023;55. PubMed PMC
Dhakal M, Nguyen KB, Hunt DJ, Ehlers RU, Spiridonov SE, Subbotin SA. Molecular identification, phylogeny and phylogeography of the entomopathogenic nematodes of the genus Heterorhabditis Poinar, 1976: a multigene approach. Nematology. 2020;23:451–66. doi: 10.1163/15685411-bja10052. DOI
Machado RA, Bhat AH, Abolafia J, Muller A, Bruno P, Fallet P, et al. Multi-locus phylogenetic analyses uncover species boundaries and reveal the occurrence of two new entomopathogenic nematode species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. J Nematology. 2021;53:1–42. doi: 10.21307/jofnem-2021-089. PubMed DOI PMC
Bhat AH, Machado RA, Abolafia J, Ruiz-Cuenca AN, Askary TH, Ameen F, et al. Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont. Parasites Vectors. 2023;16:383. doi: 10.1186/s13071-023-05990-z. PubMed DOI PMC
Spiridonov SE. Entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae: morphology and taxonomy. Biocontrol agents: entomopathogenic and slug parasitic nematodes. Wallingford UK: CABI; 2017. pp. 45–62.
Smythe AB, Holovachov O, Kocot KM. Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evol Biol. 2019;19:1–15. doi: 10.1186/s12862-019-1444-x. PubMed DOI PMC
Ahmed M, Holovachov O. Twenty years after De Ley and Blaxter—How far did we progress in understanding the phylogeny of the phylum Nematoda? Animals. 2021;11:3479. doi: 10.3390/ani11123479. PubMed DOI PMC
Ahmed M, Roberts NG, Adediran F, Smythe AB, Kocot KM, Holovachov O. Phylogenomic analysis of the phylum Nematoda: conflicts and congruences with morphology, 18S rRNA, and mitogenomes. Front Ecol Evol. 2022;9:769565. doi: 10.3389/fevo.2021.769565. DOI
Nguyen KB, Shapiro-Ilan DI, Mbata GN. Heterorhabditis georgiana n. sp. (Rhabditida: Heterorhabditidae) from Georgia. USA Nematology. 2008;10:433–48. doi: 10.1163/156854108783900276. DOI
Spiridonov SE, Subbotin SA. Phylogeny and phylogeography of Heterorhabditis and Steinernema. Advances in entomopathogenic nematode taxonomy and phylogeny. Brill; 2016. pp. 413–27.
Patricia Stock S, Campbell JF, Nadler SA. Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. J Parasitol. 2001;87:877–89. doi: 10.1645/0022-3395(2001)087[0877:POSTCS]2.0.CO;2. PubMed DOI
Weiser J. Neoaplectana carpocapsae n. sp. (Anguillulata, Steinernematinae), novy cizopasník housenek obalece jablecného, Carpocapsa pomonella L.[Czech] Vestnik Ceskoslovenske Spolecnosti Zoologicke. 1955;19:44–52.
Poinar GO, Thomas GM. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae) Parasitology. 1966;56:385–90. doi: 10.1017/S0031182000070980. PubMed DOI
Dutky S, Hough W. Note on a parasitic nematode from codling moth larvae. Carpocapsa pamonetta. Lepidoptera, Olethreutidae; 1955.
Anonymous. Nematode-borne disease that attacks insects is discovered by USDA scientist. USDA Press Release; 1955.
Poinar GO. The presence of Achromobacter nematophilus in the infective stage of a Neoaplectana sp. (Steinernematidae: Nematoda) Nematologica. 1966;12:105–8. doi: 10.1163/187529266X00068. DOI
Poinar GO, Jr, Himsworth PT. Neoaplectana parasitism of larvae of the greater wax moth, Galleria mellonella. J Invertebr Pathol. 1967;9:241–6. doi: 10.1016/0022-2011(67)90012-2. DOI
Khan A, Brooks W. A chromogenic bioluminescent bacterium associated with the entomophilic nematode Chromonema heliothidis. J Invertebr Pathol. 1977;29:253–61. doi: 10.1016/S0022-2011(77)80030-X. DOI
Poinar GO, Thomas GM, Hess R. Characteristics of the specific bacterium associated with Heterorhabditis Bacteriophora (Heterorhabditidae: Rhabditida) Nematologica. 1977;23:97–102. doi: 10.1163/187529277X00273. DOI
Milstead JE. Heterorhabditis bacteriophora as a vector for introducing its associated bacterium into the hemocoel of Galleria mellonella larvae. J Invertebr Pathol. 1979;33:324–7. doi: 10.1016/0022-2011(79)90033-8. DOI
Castellani A, Chalmers AJ. Manual of tropical medicine. Baillière, Tindall and Cox; 1919.
Hendrie MS, Holding A, Shewan JM. Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter: request for an opinion. Int J Syst Evol MicroBiol. 1974;24:534–50.
Thomas GM, Poinar JRGO. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic and Evolutionary Microbiology. 1979;29:352–60.
Burnell A, Stock SP, Heterorhabditis Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology. 2000;2:31–42. doi: 10.1163/156854100508872. DOI
Wee KE, Yonan CR, Chang F. A new broad-spectrum protease inhibitor from the entomopathogenic bacterium Photorhabdus luminescens. Microbiology. 2000;146:3141–7. doi: 10.1099/00221287-146-12-3141. PubMed DOI
Akhurst R. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Microbiology. 1980;121:303–9. doi: 10.1099/00221287-121-2-303. DOI
Akhurst R. Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus. Exp Parasitol. 1983;55:258–63. doi: 10.1016/0014-4894(83)90020-6. PubMed DOI
Thomas G, Poinar G., Jr Amended description of the genus Xenorhabdus Thomas and Poinar. Int J Syst Evol MicroBiol. 1983;33:878–9.
Akhurst R, Brooks W. The distribution of entomophilic nematodes (Heterorhabditidae and Steinernematidae) in North Carolina. J Invertebr Pathol. 1984;44:140–5. doi: 10.1016/0022-2011(84)90004-1. DOI
Grimont PA, Steigerwalt A, Boemare N, Hickman-Brenner F, Deval C, Grimont F, et al. Deoxyribonucleic acid relatedness and phenotypic study of the genus Xenorhabdus. Int J Syst Evol MicroBiol. 1984;34:378–88.
Hotchkin PG, Kaya HK. Electrophoresis of Soluble Proteins from two species of Xenorhabdus, Bacteria Mutualistically Associated with the nematodes Steinernema spp. and Heterohabditis spp. Microbiology. 1984;130:2725–31. doi: 10.1099/00221287-130-10-2725. DOI
Akhurst RJ. Xenorhabdus nematophilus subsp. beddingii (Enterobacteriaceae): a new subspecies of bacteria mutualistically associated with entomopathogenic nematodes. Int J Syst Evol MicroBiol. 1986;36:454–7.
Akhurst RJ. Xenorhabdus nematophilus subsp. poinarii: its interaction with insect pathogenic nematodes. Syst Appl Microbiol. 1986;8:142–7. doi: 10.1016/S0723-2020(86)80162-X. DOI
Akhurst R, Boemare N. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. Microbiology. 1988;134:1835–45. doi: 10.1099/00221287-134-7-1835. PubMed DOI
Yamanaka S, Hagiwara A, Nishimura Y, Tanabe H, Ishibashi N. Biochemical and physiological characteristics of Xenorhabdus species, symbiotically associated with entomopathogenic nematodes including Steinernema kushidai and their pathogenicity against Spodoptera litura (Lepidoptera: Noctuidae) Arch Microbiol. 1992;158:387–93. doi: 10.1007/BF00276297. DOI
Nishimura Y, Hagiwara A, Suzuki T, Yamanaka S. Xenorhabdus japonicus sp. nov. associated with the nematode Steinernema kushidai. World J Microbiol Biotechnol. 1994;10:207–10. doi: 10.1007/BF00360889. PubMed DOI
Ehlers R-U, Wyss U, Stackebrandt E. 16S rRNA cataloguing and the phylogenetic position of the genus Xenorhabdus. Syst Appl Microbiol. 1988;10:121–5. doi: 10.1016/S0723-2020(88)80025-0. DOI
Farmer J, 3rd, Jorgensen J, Grimont P, Akhurst R, Poinar G, Jr, Ageron E, et al. Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol. 1989;27:1594–600. doi: 10.1128/jcm.27.7.1594-1600.1989. PubMed DOI PMC
Pütz J, Meinert F, Wyss U, Ehlers R, Stackebrandt E. Development and application of oligonucleotide probes for molecular identification of Xenorhabdus species. Appl Environ Microbiol. 1990;56:181–6. doi: 10.1128/aem.56.1.181-186.1990. PubMed DOI PMC
Suzuki T, Yamanaka S, Nishimura Y. Chemotaxonomic study of Xenorhabdus species-cellular fatty acids, ubiquinone and DNA-DNA hybridization. J Gen Appl Microbiol. 1990;36:393–401. doi: 10.2323/jgam.36.393. DOI
Aguillera MM, Hodge NC, Stall RE, Smart GC., Jr Bacterial symbionts of Steinernema scapterisci. J Invertebr Pathol. 1993;62:68–72. doi: 10.1006/jipa.1993.1076. DOI
Akhurst RJ. Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. Int J Syst Evol MicroBiol. 1983;33:38–45.
Rainey F, Ehlers R-U, Stackebrandt E. Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Int J Syst Evol MicroBiol. 1995;45:379–81. PubMed
Suzuki T, Yabusaki H, Nishimura Y. Phylogenetic relationships of entomopathogenic nematophilic bacteria: Xenorhabdus spp. and Photorhabdus sp. J Basic Microbiol. 1996;36:351–4. doi: 10.1002/jobm.3620360509. PubMed DOI
Brunel B, Givaudan A, Lanois A, Akhurst R, Boemare N. Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol. 1997;63:574–80. doi: 10.1128/aem.63.2.574-580.1997. PubMed DOI PMC
Liu J, Berry R, Poinar G, Moldenke A. Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16S rRNA gene sequences. Int J Syst Evol MicroBiol. 1997;47:948–51. PubMed
Szállás E, Koch C, Fodor A, Burghardt J, Buss O, Szentirmai A, et al. Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Evol MicroBiol. 1997;47:402–7. PubMed
Fischer-Le Saux M, Mauléon H, Constant P, Brunel B, Boemare N. PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Appl Environ Microbiol. 1998;64:4246–54. doi: 10.1128/AEM.64.11.4246-4254.1998. PubMed DOI PMC
Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Evol MicroBiol. 1999;49:1645–56. doi: 10.1099/00207713-49-4-1645. PubMed DOI
Liu J, Berry RE, Blouin MS. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. J Invertebr Pathol. 2001;77:87–91. doi: 10.1006/jipa.2001.5007. PubMed DOI
Lengyel K, Lang E, Fodor A, Szállás E, Schumann P, Stackebrandt E. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Syst Appl Microbiol. 2005;28:115–22. doi: 10.1016/j.syapm.2004.10.004. PubMed DOI
Somvanshi VS, Lang E, Ganguly S, Swiderski J, Saxena AK, Stackebrandt E. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst Appl Microbiol. 2006;29:519–25. doi: 10.1016/j.syapm.2006.01.004. PubMed DOI
Tailliez P, Pages S, Ginibre N, Boemare N. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int J Syst Evol MicroBiol. 2006;56:2805–18. doi: 10.1099/ijs.0.64287-0. PubMed DOI
Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S, Boemare N. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol MicroBiol. 2010;60:1921–37. doi: 10.1099/ijs.0.014308-0. PubMed DOI
Tailliez P, Pagès S, Edgington S, Tymo LM, Buddie AG. Description of Xenorhabdus magdalenensis sp. nov., the symbiotic bacterium associated with Steinernema australe. Int J Syst Evol MicroBiol. 2012;62:1761–5. doi: 10.1099/ijs.0.034322-0. PubMed DOI
Ferreira T, Van Reenen CA, Endo A, Spröer C, Malan AP, Dicks LM. Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. Int J Syst Evol MicroBiol. 2013;63:3220–4. doi: 10.1099/ijs.0.049049-0. PubMed DOI
Kuwata R, Qiu L, Wang W, Harada Y, Yoshida M, Kondo E, et al. Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari. Int J Syst Evol MicroBiol. 2013;63:1690–5. doi: 10.1099/ijs.0.041145-0. PubMed DOI
Kämpfer P, Tobias NJ, Ke LP, Bode HB, Glaeser SP. Xenorhabdus thuongxuanensis sp. nov. and Xenorhabdus eapokensis sp. nov., isolated from Steinernema species. Int J Syst Evol MicroBiol. 2017;67:1107–14. doi: 10.1099/ijsem.0.001770. PubMed DOI
Castaneda-Alvarez C, Prodan S, Zamorano A, San-Blas E, Aballay E. Xenorhabdus lircayensis sp. nov., the symbiotic bacterium associated with the entomopathogenic nematode Steinernema unicornum. Int J Syst Evol MicroBiol. 2021;71:005151. doi: 10.1099/ijsem.0.005151. PubMed DOI
Machado RA, Bhat AH, Castaneda-Alvarez C, Askary TH, Půža V, Pagès S, et al. Xenorhabdus aichiensis sp. nov., Xenorhabdus anantnagensis sp. nov., and Xenorhabdus yunnanensis sp. nov., isolated from Steinernema Entomopathogenic Nematodes. Curr Microbiol. 2023;80:300. doi: 10.1007/s00284-023-03373-2. PubMed DOI PMC
Machado RA, Bhat AH, Fallet P, Turlings TC, Kajuga J, Yan X, et al. Xenorhabdus bovienii subsp. africana subsp. nov., isolated from Steinernema africanum entomopathogenic nematodes. Int J Syst Evol MicroBiol. 2023;73:005795. doi: 10.1099/ijsem.0.005795. PubMed DOI
Ritter CL, Malan AP, Dicks LM. Xenorhabdus bakwenae sp. n., associated with the entomopathogenic nematode Steinernema bakwenae. Nematology. 2023;25:1169–79. doi: 10.1163/15685411-bja10284. DOI
Ehlers R-U, Niemann I. Molecular identification of Photorhabdus luminescens strains by amplification of specific fragments of the 16S ribosomal DNA. Syst Appl Microbiol. 1998;21:509–19. doi: 10.1016/S0723-2020(98)80063-5. PubMed DOI
Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996;60:407–38. doi: 10.1128/mr.60.2.407-438.1996. PubMed DOI PMC
Wayne L, Brenner D, Colwell R, Grimont P, Kandler O, Krichevsky M, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol MicroBiol. 1987;37:463–4. doi: 10.1099/00207713-37-4-463. DOI
Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers R-U, Keskin N. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol. 2004;27:36–42. doi: 10.1078/0723-2020-00255. PubMed DOI
Toth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol MicroBiol. 2008;58:2579–81. doi: 10.1099/ijs.0.2008/000273-0. PubMed DOI
An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov.(Enterobacteriales: Enterobacteriaceae) Curr Microbiol. 2010;61:291–7. doi: 10.1007/s00284-010-9610-9. PubMed DOI
An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov.(Enterobacteriales: Enterobacteriaceae) Curr Microbiol. 2011;62:539–43. doi: 10.1007/s00284-010-9741-z. PubMed DOI
Ferreira T, Van Reenen C, Pages S, Tailliez P, Malan AP, Dicks LM. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol MicroBiol. 2013;63:1853–8. doi: 10.1099/ijs.0.044388-0. PubMed DOI
Ferreira T, van Reenen CA, Endo A, Tailliez P, Pages S, Spröer C, et al. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. Int J Syst Evol MicroBiol. 2014;64:1540–5. doi: 10.1099/ijs.0.059840-0. PubMed DOI
Glaeser SP, Tobias NJ, Thanwisai A, Chantratita N, Bode HB, Kämpfer P. Photorhabdus luminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. International Journal of Systematic and Evolutionary Microbiology. 2017;67:1046–51. PubMed
Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol MicroBiol. 2009;59:102–11. doi: 10.1099/ijs.0.001123-0. PubMed DOI
Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38:237–45. doi: 10.1016/j.syapm.2015.03.007. PubMed DOI
López-Hermoso C, de la Haba RR, Sánchez-Porro C, Papke RT, Ventosa A. Assessment of multilocus sequence analysis as a valuable tool for the classification of the genus Salinivibrio. Front Microbiol. 2017;8:1107. doi: 10.3389/fmicb.2017.01107. PubMed DOI PMC
Machado RA, Wüthrich D, Kuhnert P, Arce CC, Thönen L, Ruiz C et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. International journal of systematic and evolutionary microbiology. 2018;68:2664–81. PubMed
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31. doi: 10.1073/pnas.0906412106. PubMed DOI PMC
Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2010;2:117–34. doi: 10.4056/sigs.531120. PubMed DOI PMC
Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2:142–8. doi: 10.4056/sigs.541628. PubMed DOI PMC
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:1–14. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC
Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, et al. Complete genome sequence of DSM 30083 T, the type strain (U5/41 T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci. 2014;9:1–19. doi: 10.1186/1944-3277-9-2. PubMed DOI PMC
Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol MicroBiol. 2016;66:1100–3. doi: 10.1099/ijsem.0.000760. PubMed DOI
Machado RA, Bruno P, Arce CC, Liechti N, Köhler A, Bernal J et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes. International journal of systematic and evolutionary microbiology. 2019;69:652–61. PubMed
Machado RA, Muller A, Ghazal SM, Thanwisai A, Pagès S, Bode HB et al. Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. International Journal of Systematic and Evolutionary Microbiology. 2021;71:004610. PubMed
Castaneda-Alvarez C, Machado RA, Morales-Montero P, Boss A, Muller A, Prodan S, et al. Photorhabdus antumapuensis sp. nov., a novel symbiotic bacterial species associated with Heterorhabditis atacamensis entomopathogenic nematodes. Int J Syst Evol MicroBiol. 2022;72:005525. doi: 10.1099/ijsem.0.005525. PubMed DOI
Machado RA, Bhat AH, Castaneda-Alvarez C, Půža V, San-Blas E. Photorhabdus aballayi sp. nov. and Photorhabdus luminescens subsp. venezuelensis subsp. nov., isolated from Heterorhabditis amazonensis entomopathogenic nematodes. International Journal of Systematic and Evolutionary Microbiology. 2023;73:005872. PubMed
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182. doi: 10.1038/s41467-019-10210-3. PubMed DOI PMC
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–7. doi: 10.1093/nar/gkab902. PubMed DOI PMC
Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol MicroBiol. 2024;74:006300. doi: 10.1099/ijsem.0.006300. PubMed DOI PMC
Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol MicroBiol. 2014;64:316–24. doi: 10.1099/ijs.0.054171-0. PubMed DOI
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences. 2005;102:2567–72. PubMed PMC
Emelianoff V, Le Brun N, Pages S, Stock SP, Tailliez P, Moulia C, et al. Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France) J Invertebr Pathol. 2008;98:211–7. doi: 10.1016/j.jip.2008.01.006. PubMed DOI
Sajnaga E, Kazimierczak W, Skowronek M, Lis M, Skrzypek T, Waśko A. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Arch Microbiol. 2018;200:1307–16. doi: 10.1007/s00203-018-1544-9. PubMed DOI PMC
Gorgadze O, Lortkhipanidze M, Ogier J-C, Tailliez P, Burjanadze M. Steinernema tbilisiensis sp. n. (Nematoda: Steinernematidae) — a new species of entomopathogenic nematode from Georgia. J Agricultural Sci Technol (JAST). 2015;264–76.
Fischer-Le Saux M, Arteaga-Hernandez E, Mracek Z, Boemare N. The bacterial symbiont Xenorhabdus poinarii (Enterobacteriaceae) is harbored by two phylogenetic related host nematodes: the entomopathogenic species Steinernema cubanum and Steinernema glaseri (Nematoda: Steinernematidae) FEMS Microbiol Ecol. 1999;29:149–57. doi: 10.1111/j.1574-6941.1999.tb00606.x. DOI
Cimen H, Půža V, Nermuť J, Hatting J, Ramakuwela T, Hazir S. Steinernema biddulphi n. sp., a new Entomopathogenic Nematode (Nematoda: Steinernematidae) from South Africa. J Nematology. 2017;48:148–58. doi: 10.21307/jofnem-2017-022. PubMed DOI PMC
Fayyaz S, Yan X, Qiu L, Han R, Gulsher M, Khanum TA, et al. A new entomopathogenic nematode, Steinernema bifurcatum n. sp. (Rhabditida: Steinernematidae) from Punjab, Pakistan. Nematology. 2014;16:821–36. doi: 10.1163/15685411-00002811. DOI
Půža V, Campos-Herrera R, Blanco-Pérez R, Jakubíková H, Vicente-Díez I, Nermuť J. Steinernema riojaense n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Spain. Nematology. 2020;22:825–41. doi: 10.1163/15685411-00003343. DOI
Godjo A, Afouda L, Baimey H, Decraemer W, Willems A. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Archives of Microbiology. 2018;200:589–601. PubMed
Clausi M, Longo A, Rappazzo G, Tarasco E, Vinciguerra MT. Steinernema vulcanicum n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode species from Sicily (Italy) Nematology. 2011;13:409–23. doi: 10.1163/138855410X526868. DOI
Bhat AH, Chaubey AK, Půža V. The first report of Xenorhabdus indica from Steinernema pakistanense: co-phylogenetic study suggests co-speciation between X. indica and its steinernematid nematodes. J Helminthol. 2019;93:81–90. doi: 10.1017/S0022149X17001171. PubMed DOI
Patil J, Linga V, Mhatre PH, Gowda MT, Rangasamy V, Půža V. Steinernema indicum n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India. Nematology. 2023;1:1–19. PubMed
Soni S, Patil J, Linga V, Mhatre P, Gowda M, Ganguli J, et al. Steinernema shori n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from India. J Helminthol. 2023;97:e72. doi: 10.1017/S0022149X23000536. PubMed DOI
Dreyer J, Malan AP, Dicks LM. First report of a symbiotic relationship between Xenorhabdus griffiniae and an unknown Steinernema from South Africa. Arch Microbiol. 2018;200:349–53. doi: 10.1007/s00203-017-1452-4. PubMed DOI
Ferreira T, Van Reenen C, Tailliez P, Pagès S, Malan A, Dicks L. First report of the symbiotic bacterium Xenorhabdus indica associated with the entomopathogenic nematode Steinernema yirgalemense. J Helminthol. 2016;90:108–12. doi: 10.1017/S0022149X14000583. PubMed DOI
Cimen H, Půža V, Nermuť J, Hatting J, Ramakuwela T, Faktorova L, et al. Steinernema beitlechemi n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from South Africa. Nematology. 2016;18:439–53. doi: 10.1163/15685411-00002968. PubMed DOI PMC
Půža V, Nermut J, Mráček Z, Gengler S, Haukeland S. Steinernema pwaniensis n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Tanzania. J Helminthol. 2017;91:20–34. doi: 10.1017/S0022149X15001157. PubMed DOI
Kanga FN, Ivanova ES, Shepeleva NS, Spiridonov SE. Additional data on Steinernema cameroonense Ngo Kanga, Phap Quang Trinh, Wayenberge, Spiridonov, Hauser & Moens, 2012. Russian J Nematology. 2014;22:67–76.
Abate BA, Slippers B, Wingfield MJ, Malan AP, Hurley BP. Diversity of entomopathogenic nematodes and their symbiotic bacteria in South African plantations and indigenous forests. Nematology. 2018;20:355–71. doi: 10.1163/15685411-00003144. DOI
Dreyer J, Malan AP, Dicks LM. Three novel Xenorhabdus–Steinernema associations and evidence of strains of X. khoisanae switching between different clades. Curr Microbiol. 2017;74:938–42. doi: 10.1007/s00284-017-1266-2. PubMed DOI
Phan KL, Mráček Z, Půža V, Nermut J, Jarošová A. Steinernema huense sp. n., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Vietnam. Nematology. 2014;16:761–75. doi: 10.1163/15685411-00002806. DOI
Maneesakorn P, Grewal P, Chandrapatya A. Steinernema minutum sp. nov.(Rhabditida: Steinernematidae): a new entomopathogenic nematode from Thailand. Int J Nematology. 2010;20:27–42.
Kuwata R, Shigematsu M, Yoshiga T, Yoshida M, Kondo E. Phylogenetic analyses of Japanese steinernematid nematodes and their associating Xenorhabdus bacteria. Jpn J Nematol. 2006;36:75–85. doi: 10.3725/jjn.36.75. DOI
Bhat AH, Chaubey AK, Puža V, San-Blas E. First report and comparative study of Steinernema surkhetense (Rhabditida: Steinernematidae) and its symbiont bacteria from subcontinental India. J Nematology. 2017;49:92–102. doi: 10.21307/jofnem-2017-049. PubMed DOI PMC
Londoño-Caicedo JM, Uribe-Londoño M, Buitrago-Bitar MA, Cortés AJ, Muñoz-Flórez JE. Molecular identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and their bacterial endosymbionts, isolated from Banana and Plantain crops in Western Colombia. Agronomy. 2023;13:1373. doi: 10.3390/agronomy13051373. DOI
Spiridonov SE, Waeyenberge L, Moens M. Steinernema Schliemanni sp. n. (Steinernematidae; Rhabditida) – a new species of steinernematids of the ‘monticolum’group from Europe. Russian J Nematology. 2010;18:175–90.
Machado RA, Bhat AH, Abolafia J, Shokoohi E, Fallet P, Turlings TC et al. Steinernema africanum n. sp. (Rhabditida, Steinernematidae), a new entomopathogenic nematode species isolated in the Republic of Rwanda. J Nematology. 2022;54. PubMed PMC
Tarasco E, Santiago Alvarez C, Triggiani O, Quesada Moraga E. Laboratory studies on the competition for insect haemocoel between Beauveria bassiana and Steinernema ichnusae recovered in the same ecological niche. Biocontrol Sci Technol. 2011;21:693–704. doi: 10.1080/09583157.2011.570428. DOI
Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR, deLéon L, et al. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ Microbiol. 2012;14:924–39. doi: 10.1111/j.1462-2920.2011.02663.x. PubMed DOI PMC
Lee M-M, Stock SP. A multilocus approach to assessing co-evolutionary relationships between Steinernema spp.(Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp.(γ-Proteobacteria: Enterobacteriaceae) Syst Parasitol. 2010;77:1–12. doi: 10.1007/s11230-010-9256-9. PubMed DOI
Kazimierczak W, Sajnaga E, Skowronek M, Kreft AM, Skrzypek HW, Wiater A. Molecular and phenotypic characterization of Xenorhabdus bovienii symbiotically associated with Steinernema silvaticum. Arch Microbiol. 2016;198:995–1003. doi: 10.1007/s00203-016-1261-1. PubMed DOI
Mamiya Y, Akiba M, Ekino T, Kanzaki N. Morphology, molecular profiles and distribution of Japanese populations of Steinernema tielingense Ma, Chen, Li, Han, Khatri-Chhetri, De Clercq & Moens, 2012 (Rhabditida: Steinernematidae) Nematology. 2021;23:909–28. doi: 10.1163/15685411-bja10085. DOI
Shapiro-Ilan DI, Blackburn D, Duncan L, El-Borai FE, Koppenhöfer H, Tailliez P, et al. Characterization of biocontrol traits in Heterorhabditis floridensis: a species with broad temperature tolerance. J Nematology. 2014;46:336. PubMed PMC
Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Current microbiology. 2013;66:30–9. PubMed
Geldenhuys J, Malan A, Dicks L. First Report of the isolation of the Symbiotic Bacterium Photorhabdus luminescens subsp. laumondii Associated with Heterorhabditis safricana from South Africa. Curr Microbiol. 2016;73:790–5. doi: 10.1007/s00284-016-1116-7. PubMed DOI
Machado RA, Somvanshi VS, Muller A, Kushwah J, Bhat CG. Photorhabdus hindustanensis sp. nov., Photorhabdus akhurstii subsp. akhurstii subsp. nov., and Photorhabdus akhurstii subsp. bharatensis subsp. nov., isolated from Heterorhabditis entomopathogenic nematodes. International Journal of Systematic and Evolutionary Microbiology. 2021;71:004998. PubMed
Page RD, Charleston MA. Trees within trees: phylogeny and historical associations. Trends Ecol Evol. 1998;13:356–9. doi: 10.1016/S0169-5347(98)01438-4. PubMed DOI
Stock SP. Diversity, biology and evolutionary relationships. Nematode pathogenesis of insects and other pests: Ecology and applied technologies for sustainable plant and crop protection. Springer; 2015. pp. 3–27.
Lalramnghaki H, Vanlalhlimpuia, Vanramliana L. Characterization of a new isolate of entomopathogenic nematode, Steinernema sangi (Rhabditida, Steinernematidae), and its symbiotic bacteria Xenorhabdus vietnamensis (γ-Proteobacteria) from Mizoram, northeastern India. J Parasitic Dis. 2017;41:1123–31. doi: 10.1007/s12639-017-0945-z. PubMed DOI PMC
Maher AM, Asaiyah MA, Brophy C, Griffin CT. An entomopathogenic nematode extends its niche by associating with different symbionts. Microb Ecol. 2017;73:211–23. doi: 10.1007/s00248-016-0829-2. PubMed DOI
Maneesakorn P, An R, Daneshvar H, Taylor K, Bai X, Adams BJ, et al. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae. Mol Phylogenet Evol. 2011;59:271–80. doi: 10.1016/j.ympev.2011.02.012. PubMed DOI
Funk DJ, Helbling L, Wernegreen JJ, Moran NA. Intraspecific phylogenetic congruence among multiple symbiont genomes. Proceedings of the Royal Society of London Series B: Biological Sciences. 2000;267:2517–21. PubMed PMC
Wernegreen J, Riley M. Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol. 1999;16:98–113. doi: 10.1093/oxfordjournals.molbev.a026041. PubMed DOI
Peccoud J, Simon J-C, McLaughlin HJ, Moran NA. Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. Proceedings of the National Academy of Sciences. 2009;106:16315–20. PubMed PMC
Liu L, Huang X, Zhang R, Jiang L, Qiao G. Phylogenetic congruence between Mollitrichosiphum (Aphididae: Greenideinae) and Buchnera indicates insect–bacteria parallel evolution. Syst Entomol. 2013;38:81–92. doi: 10.1111/j.1365-3113.2012.00647.x. DOI
Murfin K, Lee M, Klassen J, McDonald B, Larget B, Forst S et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with. Steinernema spp. 2015;00076–15. PubMed PMC