Heterorhabditis caligo n. sp. (Rhabditida: Heterorhabditidae): A New Entomopathogenic Nematode from Pichilemu Sand Dunes, Chile
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41245697
PubMed Central
PMC12614883
DOI
10.2478/jofnem-2025-0045
PII: jofnem-2025-0045
Knihovny.cz E-zdroje
- Klíčová slova
- description, molecular biology, morphology, morphometry, phylogeny, symbiotic bacteria,
- Publikační typ
- časopisecké články MeSH
During a survey of the nematode biodiversity in the Petrel wetland (central Chile), a population of Heterorhabditis sp. was found in the coastal dune samples. Morphological, morphometric, and molecular studies indicated that this nematode belonged to the megidis group, and represented a novel species, which we named Heterorhabditis caligo n. sp. This nematode species resembles H. marelatus but it is different in the morphometrics of its infective juvenile in the following ways: pharynx length (135-150 μm vs. 120-138 μm), and the position of the excretory pore from the anterior end (105-128 μm vs. 81-113 μm). In males, the fourth and eighth pairs of the bursal papillae are shorter and do not reach the edge of the bursa in H. caligo n. sp., whereas all the papillae in H. marelatus reach the edge of the bursa. The excretory pore of amphimictic females of H. caligo n. sp. is located more posteriorly than in those of H. marelatus 193 (169-224) μm vs. 157 (139-178) μm, respectively. Phylogenetic analyses of the genus based on whole nuclear and mitochondrial genome sequences and on five gene markers showed a clear separation of Heterorhabditis caligo n. sp. from the other species, placing it within the megidis group.
Centre of Systemic Biology for Crop Protection Universidad de O'Higgins Campus Colchagua Chile
Computational Biology Independent Researcher Medellin Colombia
Zobrazit více v PubMed
Andaló V., Nguyen K. B., Moino A.. Heterorhabditis amazonensis n. sp. (Rhabditida: Heterorhabditidae) from Amazonas, Brazil. Nematology: International Journal of Fundamental and Applied Nematological Research. 2006;8:853–867. doi: 10.1163/156854106779799286. DOI
Astashyn A., Tvedte E. S., Sweeney D., Sapojnikov V., Bouk N., Joukov V., Mozes E., Strope P. K., Sylla P. M., Wagner L., Bidwell S. L., Brown L. C., Clark K., Davis E. W., Smith-White B., Hlavina W., Pruitt K. D., Schneider V. A., Murphy T. D.. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biology. 2024;25:60. doi: 10.1186/s13059-024-03198-7. PubMed DOI PMC
Auch A. F., Klenk H. P., Göker M.. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences. 2010a;2:142–148. doi: 10.4056/sigs.541628. PubMed DOI PMC
Auch A. F., Von Jan M., Klenk H. P., Göker M.. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standards in Genomic Sciences. 2010b;2:117–134. doi: 10.4056/sigs.531120. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S., Prjibelski A. D., Pyshkin A. V., Sirotkin A. V., Vyahhi N., Tesler G., Alekseyev M. A., Pevzner P. A.. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Bedding R. A., Akhurst R. J.. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica. 1975;21:109–110. doi: 10.1163/187529275X00419. DOI
Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P. F.. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Bhat A. H., Machado R. A. R., Abolafia J., Ruiz-Cuenca A. N., Askary T. H., Ameen F., Dass W. M.. Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont. Parasites and Vectors. 2023;16:383. doi: 10.1186/s13071-023-05990-z. PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Cantarel B. L., Korf I., Robb S. M. C., Parra G., Ross E., Moore B., Holt C., Sánchez Alvarado A., Yandell M.. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research. 2008;18:188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J.. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Chevenet F., Brun C., Bañuls A. L., Jacq B., Christen R.. TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. 2006;7:439. doi: 10.1186/1471-2105-7-439. PubMed DOI PMC
Courtney W. D., Polley D., Miller V. L.. TAF, an improved fixative in nematode technique. Plant Disease Reporter. 1955;39:570–571.
Dhakal M., Nguyen K. B., Hunt D. J., Ehlers R. U., Spiridonov S. E., Subbotin S. A.. Molecular identification, phylogeny and phylogeography of the entomopathogenic nematodes of the genus Heterorhabditis Poinar, 1976: A multigene approach. Nematology: International Journal of Fundamental and Applied Nematological Research. 2020;23:451–466. doi: 10.1163/15685411-bja10052. DOI
Dierckxsens N., Mardulyn P., Smits G.. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research. 2016;45:e18. doi: 10.1093/nar/gkw955. PubMed DOI PMC
Edgar R. C.. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Edgington S., Buddie A. G., Moore D., France A., Merino L., Hunt D. J.. Heterorhabditis atacamensis n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Atacama Desert, Chile. Journal of Helminthology. 2011;85:381–394. doi: 10.1017/S0022149X10000702. PubMed DOI
Emms D. M., Kelly S.. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Griffin C. T., Downes M. J., Block W.. Tests of Antarctic soils for insect parasitic nematodes. Antarctic Science. 1990;2:221–222. doi: 10.1017/S095410209000030X. DOI
Katoh K., Kuma K., Toh H., Miyata T.. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Kimura M.. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Kumar S., Stecher G., Tamura K.. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Langmead B., Salzberg S. L.. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Lankin G., Santiagos A., Hermosilla M., Aballay E., San-Blas E.. A novel approach for the biological control of invasive Bagrada bugs with entomopathogenic nematodes. Journal of Pest Science. 2022;95:699–707. doi: 10.1007/s10340-021-01400-4. DOI
Letunic I., Bork P.. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Machado R. A. R., Abolafia J., Robles M. C., Ruiz-Cuenca A. N., Bhat A. H., Shokoohi E., Půža V., Zhang X., Erb M., Robert C. A. M., Hibbard B.. Description of Heterorhabditis americana n. sp. (Rhabditida, Heterorhabditidae), a new entomopathogenic nematode species isolated in North America. Parasites and Vectors. 2025a;18:101. doi: 10.1186/s13071-025-06702-5. PubMed DOI PMC
Machado R. A. R., Bhat A. H., Abolafia J., Muller A., Bruno P., Fallet P., Arce C. C. M., Turlings T. C. J., Bernal J. S., Kajuga J., Waweru B., Toepfer S.. Multi-locus phylogenetic analyses uncover species boundaries and reveal the occurrence of two new entomopathogenic nematode species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. Journal of Nematology. 2021;53:1–42. doi: 10.21307/jofnem-2021-089. PubMed DOI PMC
Machado R. A. R., Muller A., Hiltmann A., Bhat A. H., Půža V., Malan A. P., Castaneda-Alvarez C., San-Blas E., Duncan L. W., Shapiro-Ilan D., Karimi J., Lalramliana, Lalramnghaki H. C., Baimey H.. Genome-wide analyses provide insights into genetic variation, phylo- and co-phylogenetic relationships, and biogeography of the entomopathogenic nematode genus Heterorhabditis. Molecular Phylogenetics and Evolution. 2025b;204:108284. doi: 10.1016/j.ympev.2025.108284. PubMed DOI
Machado R. A. R., Wüthrich D., Kuhnert P., Arce C. C. M., Thönen L., Ruiz C., Zhang X., Robert C. A. M., Karimi J., Kamali S., Ma J., Bruggmann R., Erb M.. Whole-genome-based revisit of Photorhabdus phylogeny: Proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. International Journal of Systematic and Evolutionary Microbiology. 2018;68:2664–2681. doi: 10.1099/ijsem.0.002820. PubMed DOI
Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC
Meier-Kolthoff J. P., Hahnke R. L., Petersen J., Scheuner C., Michael V., Fiebig A., Rohde C., Rohde M., Fartmann B., Goodwin L. A., Chertkov O., Reddy T., Pati A., Ivanova N. N., Markowitz V., Kyrpides N. C., Woyke T., Göker M., Klenk H. P.. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Standards in Genomic Sciences. 2014;9:2. doi: 10.1186/1944-3277-9-2. PubMed DOI PMC
Nguyen K. B. Nguyen K.B., Hunt D.J. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Nematology Monographs and Perspectives. Vol. 5. Brill; Leiden: 2007. Methodology, morphology and identification; pp. 59–119. (Eds.),
Nguyen K. B., Shapiro-Ilan D., Mbata G. N.. Heterorhabditis georgiana n. sp. (Rhabditida: Heterorhabditidae) from Georgia, USA. Nematology: International Journal of Fundamental and Applied Nematological Research. 2008;10:433–448. doi: 10.1163/156854108783900276. DOI
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W.. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Pereira C.. Rhabditis hambletoni n. sp., nema apparentemente semiparasito da Broca do algodoeiro (Gasterocercodes brasiliensis) Archivos Instituto Biologico. 1937;8:215–231.
Poinar G. O.. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. gen., n. sp. (Rhabditida; Heterorhabditidae n. fam.) Nematologica. 1975;21:463–470. doi: 10.1163/187529275X00239. DOI
Poinar G. O., Karunakar G. K., David H.. Heterorhabditis indicus n. sp. (Rhabditida: nematoda) from India: Separation of Heterorhabditis spp. by infective juveniles. Fundamental and Applied Nematology. 1992;15:467–472.
Price M. N., Dehal P. S., Arkin A. P.. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Půža V., Machado R. A. R.. Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema–Xenorhabdus and Heterorhabditis–Photorhabdus. Zoological Letters. 2024;10:13. doi: 10.1186/s40851-024-00235-y. PubMed DOI PMC
Půža V., Machado R. A. R., Malan A. P.. Systematics, diversity and biogeography of entomopathogenic nematodes and their bacterial symbionts. Journal of Invertebrate Pathology. 2025;211:108362. doi: 10.1016/j.jip.2025.108362. PubMed DOI
San-Blas E., Campos-Herrera R., Dolinski C., Monteiro C., Andaló V., Leite L. G., Rodríguez M. G., Morales-Montero P., Sáenz-Aponte A., Cedano C., López-Nuñez J. C., Del Valle E., Doucet M., Lax P., Navarro P. D., Báez F., Llumiquinga P., Ruiz-Vega J., Guerra-Moreno A., Stock S. P.. Entomopathogenic nematology in Latin America: A brief history, current research and future prospects. Journal of Invertebrate Pathology. 2019;165:223–245. doi: 10.1016/j.jip.2019.03.010. PubMed DOI
Seppey M., Manni M., Zdobnov E. M. Kollmar M. Gene prediction. Vol. 1962. New York: Springer; 2019. BUSCO: Assessing genome assembly and annotation completeness; pp. 227–245. PubMed
van Lenteren J. C., Bueno V. H. P., Betiol W.. Latin America has the largest area under augmentative biological control worldwide, mainly with applications in open field crops. Biological Control. 2025;207:105827. doi: 10.1016/j.biocontrol.2025.105827. DOI
Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C. A., Zeng Q., Wortman J., Young S. K., Earl A. M.. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos One. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G.. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology. 1987;37:463–464. doi: 10.1099/00207713-37-4-463. DOI
White G. F.. A method for obtaining infective nematode larvae from cultures. Science. 1927;66:302–303. doi: 10.1126/science.66.1709.302.b. PubMed DOI
Wick R. R., Judd L. M., Gorrie C. L., Holt K. E.. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology. 2017;13:e1005595. doi: 10.1371/journal.pcbi.1005595. PubMed DOI PMC