Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19

. 2021 Aug ; 39 (13) : 4582-4593. [epub] 20200622

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32567979

The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) calls the whole world into a medical emergency. For tackling Coronavirus Disease 2019 (COVID-19), researchers from around the world are swiftly working on designing and identifying inhibitors against all possible viral key protein targets. One of the attractive drug targets is guanine-N7 methyltransferase which plays the main role in capping the 5'-ends of viral genomic RNA and sub genomic RNAs, to escape the host's innate immunity. We performed homology modeling and molecular dynamic (MD) simulation, in order to understand the molecular architecture of Guanosine-P3-Adenosine-5',5'-Triphosphate (G3A) binding with C-terminal N7-MTase domain of nsp14 from SARS-CoV-2. The residue Asn388 is highly conserved in present both in N7-MTase from SARS-CoV and SARS-CoV-2 and displays a unique function in G3A binding. For an in-depth understanding of these substrate specificities, we tried to screen and identify inhibitors from the Traditional Chinese Medicine (TCM) database. The combination of several computational approaches, including screening, MM/GBSA, MD simulations, and PCA calculations, provides the screened compounds that readily interact with the G3A binding site of homology modeled N7-MTase domain. Compounds from this screening will have strong potency towards inhibiting the substrate-binding and efficiently hinder the viral 5'-end RNA capping mechanism. We strongly believe the final compounds can become COVID-19 therapeutics, with huge international support.[Formula: see text]The focus of this study is to screen for antiviral inhibitors blocking guanine-N7 methyltransferase (N7-MTase), one of the key drug targets involved in the first methylation step of the SARS-CoV-2 RNA capping mechanism. Compounds binding the substrate-binding site can interfere with enzyme catalysis and impede 5'-end cap formation, which is crucial to mimic host RNA and evade host cellular immune responses. Therefore, our study proposes the top hit compounds from the Traditional Chinese Medicine (TCM) database using a combination of several computational approaches.Communicated by Ramaswamy H. Sarma.

Zobrazit více v PubMed

Aanouz I., Belhassan A., El-Khatabi K., Lakhlifi T., El-Ldrissi M., & Bouachrine M. (2020). Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–9. 10.1080/07391102.2020.1758790 PubMed DOI PMC

Abdelli I., Hassani F., Bekkel Brikci S., & Ghalem S. (2020). In silico study the inhibition of Angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. Journal of Biomolecular Structure and Dynamics, 1–17. 10.1080/07391102.2020.1763199 PubMed DOI PMC

Aksoydan B., Kantarcioglu I., Erol I., Salmas R. E., & Durdagi S. (2018). Structure-based design of hERG-neutral antihypertensive oxazalone and imidazolone derivatives. Journal of Molecular Graphics & Modelling, 79, 103–117. 10.1016/j.jmgm.2017.10.011 PubMed DOI

Alogheli H., Olanders G., Schaal W., Brandt P., & Karlen A. (2017). Docking of macrocycles: Comparing rigid and flexible docking in glide. Journal of Chemical Information and Modeling, 57(2), 190–202. 10.1021/acs.jcim.6b00443 PubMed DOI

Andersen K. G., Rambaut A., Lipkin W. I., Holmes E. C., & Garry R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. 10.1038/s41591-020-0820-9 PubMed DOI PMC

Bandaru S., Alvala M., Nayarisseri A., Sharda S., Goud H., Mundluru H. P., & Singh S. K. (2017). Molecular dynamic simulations reveal suboptimal binding of salbutamol in T164I variant of β2 adrenergic receptor. PLoS One, 12(10), e0186666 10.1371/journal.pone.0186666 PubMed DOI PMC

Bawono P., & Heringa J. (2014). PRALINE: A versatile multiple sequence alignment toolkit. Methods in Molecular Biology, 1079, 245–262. 10.1007/978-1-62703-646-7_16 PubMed DOI

Boopathi S., Poma A. B., & Kolandaivel P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–10. 10.1080/07391102.2020.1758788 PubMed DOI PMC

Chavez Thielemann H., Cardellini A., Fasano M., Bergamasco L., Alberghini M., Ciorra G., Chiavazzo E., & Asinari P. (2019). From GROMACS to LAMMPS: GRO2LAM: A converter for molecular dynamics software. Journal of Molecular Modeling, 25(6), 147 10.1007/s00894-019-4011-x PubMed DOI

Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., & Guo D. (2009). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3484–3489. 10.1073/pnas.0808790106 PubMed DOI PMC

Chen Y., & Guo D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 31(1), 3–11. 10.1007/s12250-016-3726-4 PubMed DOI PMC

Childers M. C., & Daggett V. (2018). Validating molecular dynamics simulations against experimental observables in light of underlying conformational ensembles. The Journal of Physical Chemistry B, 122(26), 6673–6689. 10.1021/acs.jpcb.8b02144 PubMed DOI PMC

Chinnasamy S., Selvaraj G., Kaushik A. C., Kaliamurthi S., Chandrabose S., Singh S. K., Thirugnanasambandam R., Gu K., & Wei D. Q. (2019). Molecular docking and molecular dynamics simulation studies to identify potent AURKA inhibitors: Assessing the performance of density functional theory, MM-GBSA and mass action kinetics calculations. Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2019.1674695 PubMed DOI

Chinnasamy S., Selvaraj G., Selvaraj C., Kaushik A. C., Kaliamurthi S., Khan A., Singh S. K., & Wei D. Q. (2020). Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). International Journal of Biological Macromolecules, 144, 53–66. 10.1016/j.ijbiomac.2019.12.091 PubMed DOI

Das S., Sarmah S., Lyndem S., & Singha Roy A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2020.1763201 PubMed DOI PMC

Decroly E., Ferron F., Lescar J., & Canard B. (2011). Conventional and unconventional mechanisms for capping viral mRNA. Nature Reviews. Microbiology, 10(1), 51–65. 10.1038/nrmicro2675 PubMed DOI PMC

DiMaio D., Enquist L. W., & Dermody T. S. (2020). Introduction: A new coronavirus emerges, this time causing a pandemic. Annual Review of Virology, 1–4. 10.1146/annurev-vi-07-042020-100001 PubMed DOI

Elmezayen A. D., Al-Obaidi A., Sahin A. T., & Yelekci K. (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–13. 10.1080/07391102.2020.1758791 PubMed DOI PMC

Fazil M. H., Kumar S., Rao N. S., Selvaraj C., Singh S. K., Pandey H. P., & Singh D. V. (2012). Comparative structural analysis of two proteins belonging to quorum sensing system in Vibrio cholerae. Journal of Biomolecular Structure & Dynamics, 30(5), 574–584. 10.1080/07391102.2012.687523 PubMed DOI

Ferron F., Decroly E., Selisko B., & Canard B. (2012). The viral RNA capping machinery as a target for antiviral drugs. Antiviral Research, 96(1), 21–31. 10.1016/j.antiviral.2012.07.007 PubMed DOI PMC

Fung T. S., & Liu D. X. (2019). Human Coronavirus: Host-pathogen interaction. Annual Review of Microbiology, 73, 529–557. 10.1146/annurev-micro-020518-115759 PubMed DOI

Grover A., Katiyar S. P., Singh S. K., Dubey V. K., & Sundar D. (2012). A leishmaniasis study: Structure-based screening and molecular dynamics mechanistic analysis for discovering potent inhibitors of spermidine synthase. Biochimica et Biophysica Acta, 1824(12), 1476–1483. 10.1016/j.bbapap.2012.05.016 PubMed DOI

Gupta M. K., Vemula S., Donde R., Gouda G., Behera L., & Vadde R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2020.1751300 PubMed DOI PMC

Gyebi G. A., Ogunro O. B., Adegunloye A. P., Ogunyemi O. M., & Afolabi S. O. (2020). Potential inhibitors of Coronavirus 3-Chymotrypsin-Like protease (3CL(pro)): An in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics, 1–19. 10.1080/07391102.2020.1764868 PubMed DOI PMC

Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J. Y., Wang L., Lupyan D., Dahlgren M. K., Knight J. L., Kaus J. W., Cerutti D. S., Krilov G., Jorgensen W. L., Abel R., & Friesner R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. 10.1021/acs.jctc.5b00864 PubMed DOI

Hercik K., Brynda J., Nencka R., & Boura E. (2017). Structural basis of Zika virus methyltransferase inhibition by sinefungin. Archives of Virology, 162(7), 2091–2096. 10.1007/s00705-017-3345-x PubMed DOI

Kawatkar S., Wang H., Czerminski R., & Joseph-McCarthy D. (2009). Virtual fragment screening: An exploration of various docking and scoring protocols for fragments using Glide. Journal of Computer-Aided Molecular Design, 23(8), 527–539. 10.1007/s10822-009-9281-4 PubMed DOI

Khan R. J., Jha R. K., Amera G. M., Jain M., Singh E., Pathak A., Singh R. P., Muthukumaran J., & Singh A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 1–14. 10.1080/07391102.2020.1753577 PubMed DOI PMC

Koonin E. V., & Moss B. (2010). Viruses know more than one way to don a cap. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3283–3284. 10.1073/pnas.0915061107 PubMed DOI PMC

Kumar A., Liang B., Aarthy M., Singh S. K., Garg N., Mysorekar I. U., & Giri R. (2018). Hydroxychloroquine inhibits Zika Virus NS2B-NS3 protease. ACS Omega, 3(12), 18132–18141. 10.1021/acsomega.8b01002 PubMed DOI PMC

Kumar D., Kumari K., Jayaraj A., Kumar V., Kumar R. V., Dass S. K., Chandra R., & Singh P. (2020). Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. Journal of Biomolecular Structure and Dynamics, 1–14. 10.1080/07391102.2020.1752310 PubMed DOI PMC

Lai M. M., & Stohlman S. A. (1981). Comparative analysis of RNA genomes of mouse hepatitis viruses. Journal of Virology, 38(2), 661–670. http://www.ncbi.nlm.nih.gov/pubmed/6165837 10.1128/JVI.38.2.661-670.1981 PubMed DOI PMC

Lionta E., Spyrou G., Vassilatis D. K., & Cournia Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. 10.2174/1568026614666140929124445 PubMed DOI PMC

Lobo-Galo N., Terrazas-Lopez M., Martinez-Martinez A., & Diaz-Sanchez A. G. (2020). FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. Journal of Biomolecular Structure and Dynamics., 1–12. 10.1080/07391102.2020.1764393 PubMed DOI PMC

Ma Y., Wu L., Shaw N., Gao Y., Wang J., Sun Y., Lou Z., Yan L., Zhang R., & Rao Z. (2015). Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9436–9441. 10.1073/pnas.1508686112 PubMed DOI PMC

Ma Y., Zhou K., Fan J., & Sun S. (2016). Traditional Chinese medicine: Potential approaches from modern dynamical complexity theories. Frontiers of Medicine, 10(1), 28–32. 10.1007/s11684-016-0434-2 PubMed DOI

Martinez L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264 10.1371/journal.pone.0119264 PubMed DOI PMC

Minskaia E., Hertzig T., Gorbalenya A. E., Campanacci V., Cambillau C., Canard B., & Ziebuhr J. (2006). Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5108–5113. 10.1073/pnas.0508200103 PubMed DOI PMC

Muralidharan N., Sakthivel R., Velmurugan D., & Gromiha M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–6. 10.1080/07391102.2020.1752802 PubMed DOI

Nakagawa K., Lokugamage K. G., & Makino S. (2016). Viral and cellular mRNA translation in Coronavirus-infected cells. Advances in Virus Research, 96, 165–192. 10.1016/bs.aivir.2016.08.001 PubMed DOI PMC

Nguyen T. T., Viet M. H., & Li M. S. (2014). Effects of water models on binding affinity: Evidence from all-atom simulation of binding of tamiflu to A/H5N1 neuraminidase. The Scientific World Journal, 2014, 536084 10.1155/2014/536084 PubMed DOI PMC

Onufriev A. V., & Alexov E. (2013). Protonation and pK changes in protein-ligand binding. Quarterly Reviews of Biophysics, 46(2), 181–209. 10.1017/S0033583513000024 PubMed DOI PMC

Pant S., Singh M., Ravichandiran V., Murty U. S. N., & Srivastava H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–10. 10.1080/07391102.2020.1757510 PubMed DOI PMC

Patidar K., Deshmukh A., Bandaru S., Lakkaraju C., Girdhar A., Vr G., Banerjee T., Nayarisseri A., & Singh S. K. (2016). Virtual screening approaches in identification of bioactive compounds akin to delphinidin as potential HER2 inhibitors for the treatment of breast cancer. Asian Pacific Journal of Cancer Prevention: APJCP, 17(4), 2291–2295. 10.7314/apjcp.2016.17.4.2291 PubMed DOI

Pontius J., Richelle J., & Wodak S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264(1), 121–136. 10.1006/jmbi.1996.0628 PubMed DOI

Rakhshani H., Dehghanian E., & Rahati A. (2019). Enhanced GROMACS: Toward a better numerical simulation framework. Journal of Molecular Modeling, 25(12), 355.10.1007/s00894-019-4232-z PubMed DOI

Rapp C., Kalyanaraman C., Schiffmiller A., Schoenbrun E. L., & Jacobson M. P. (2011). A molecular mechanics approach to modeling protein-ligand interactions: Relative binding affinities in congeneric series. Journal of Chemical Information and Modeling, 51(9), 2082–2089. 10.1021/ci200033n PubMed DOI PMC

Rayalu D. J., Selvaraj C., Singh S. K., Ganeshan R., Kumar N. U., & Seshapani P. (2012). Homology modeling, active site prediction, and targeting the anti hypertension activity through molecular docking on endothelin - B receptor domain. Bioinformation, 8(2), 81–86. 10.6026/97320630008081 PubMed DOI PMC

Sarma P., Sekhar N., Prajapat M., Avti P., Kaur H., Kumar S., Singh S., Kumar H., Prakash A., Dhibar D. P., & Medhi B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2020.1753580 PubMed DOI PMC

Sastry G. M., Adzhigirey M., Day T., Annabhimoju R., & Sherman W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. 10.1007/s10822-013-9644-8 PubMed DOI

Schuttelkopf A. W., & van Aalten D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. 10.1107/S0907444904011679 PubMed DOI

Selvaraj C., Bharathi Priya R., & Singh S. K. (2014). Communication of γ phage lysin plyG enzymes binding toward SrtA for inhibition of Bacillus anthracis: protein-protein interaction and molecular dynamics study. Cell Communication & Adhesion, 21(5), 257–265. 10.3109/15419061.2014.927444 PubMed DOI

Selvaraj C., Omer A., Singh P., & Singh S. K. (2015). Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. Molecular Biosystems, 11(1), 178–189. 10.1039/c4mb00486h PubMed DOI

Selvaraj C., Sakkiah S., Tong W., & Hong H. (2018). Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 112, 495–506. 10.1016/j.fct.2017.08.028 PubMed DOI

Selvaraj C., Singh P., & Singh S. K. (2014. a). Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: Comparative structure analysis of wild and mutant HTLV-1 PR. Journal of Molecular Recognition: JMR, 27(12), 696–706. 10.1002/jmr.2395 PubMed DOI

Selvaraj C., Singh P., & Singh S. K. (2014. b). Molecular modeling studies and comparative analysis on structurally similar HTLV and HIV protease using HIV-PR inhibitors. Journal of Receptor and Signal Transduction Research, 34(5), 361–371. 10.3109/10799893.2014.898659 PubMed DOI

Selvaraj C., & Singh S. K. (2014). Validation of potential inhibitors for SrtA against Bacillus anthracis by combined approach of ligand-based and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 32(8), 1333–1349. 10.1080/07391102.2013.818577 PubMed DOI

Selvaraj C., Sivakamavalli J., Baskaralingam V., & Singh S. K. (2014). Virtual screening of LPXTG competitive SrtA inhibitors targeting signal transduction mechanism in Bacillus anthracis: A combined experimental and theoretical study. Journal of Receptor and Signal Transduction Research, 34(3), 221–232. 10.3109/10799893.2013.876044 PubMed DOI

Selvaraj C., Sivakamavalli J., Vaseeharan B., Singh P., & Singh S. K. (2014). Examine the characterization of biofilm formation and inhibition by targeting SrtA mechanism in Bacillus subtilis: A combined experimental and theoretical study. Journal of Molecular Modeling, 20(8), 2364 10.1007/s00894-014-2364-8 PubMed DOI

Shafreen R. M., Selvaraj C., Singh S. K., & Pandian S. K. (2013). Exploration of fluoroquinolone resistance in Streptococcus pyogenes: Comparative structure analysis of wild-type and mutant DNA gyrase. Journal of Molecular Recognition, 26(6), 276–285. 10.1002/jmr.2270 PubMed DOI

Sivakamavalli J., Selvaraj C., Singh S. K., & Vaseeharan B. (2014). Interaction investigations of crustacean β-GBP recognition toward pathogenic microbial cell membrane and stimulate upon prophenoloxidase activation. Journal of Molecular Recognition: JMR, 27(4), 173–183. 10.1002/jmr.2348 PubMed DOI

Sliwoski G., Kothiwale S., Meiler J., & Lowe, E. W. Jr.(2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. 10.1124/pr.112.007336 PubMed DOI PMC

Swegat W., Schlitter J., Kruger P., & Wollmer A. (2003). MD simulation of protein-ligand interaction: Formation and dissociation of an insulin-phenol complex. Biophysical Journal, 84(3), 1493–1506. 10.1016/S0006-3495(03)74962-5 PubMed DOI PMC

Tripathi S. K., Singh S. K., Singh P., Chellaperumal P., Reddy K. K., & Selvaraj C. (2012). Exploring the selectivity of a ligand complex with CDK2/CDK1: A molecular dynamics simulation approach. Journal of Molecular Recognition: JMR, 25(10), 504–512. 10.1002/jmr.2216 PubMed DOI

Umesh K. D., Selvaraj C., Singh S. K., & Dubey V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 1–9. 10.1080/07391102.2020.1763202 PubMed DOI PMC

van Aalten D. M., Bywater R., Findlay J. B., Hendlich M., Hooft R. W., & Vriend G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262. 10.1007/BF00355047 PubMed DOI

Verma P., Tiwari M., & Tiwari V. (2018). In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii. Journal of Biomolecular Structure & Dynamics, 36(5), 1182–1194. 10.1080/07391102.2017.1317025 PubMed DOI

Vijayalakshmi P., Selvaraj C., Singh S. K., Nisha J., Saipriya K., & Daisy P. (2013). Exploration of the binding of DNA binding ligands to Staphylococcal DNA through QM/MM docking and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 31(6), 561–571. 10.1080/07391102.2012.706080 PubMed DOI

Wang J., Wong Y. K., & Liao F. (2018). What has traditional Chinese medicine delivered for modern medicine? Expert Reviews in Molecular Medicine, 20, e4 10.1017/erm.2018.3 PubMed DOI

Wang P., Li K., Tao Y., Li D., Zhang Y., Xu H., & Yang H. (2019). TCM-ADMEpred: A novel strategy for poly-pharmacokinetics prediction of traditional Chinese medicine based on single constituent pharmacokinetics, structural similarity, and mathematical modeling. Journal of Ethnopharmacology, 236, 277–287. 10.1016/j.jep.2018.07.008 PubMed DOI

Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K. Y., Wang Q., Zhou H., Yan J., & Qi J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904. 10.1016/j.cell.2020.03.045 PubMed DOI PMC

Webb B., & Sali A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 1–37. 10.1002/cpbi.3 PubMed DOI PMC

Webb B., & Sali A. (2017). Protein structure modeling with MODELLER . Methods in Molecular Biology, 1654, 39–54. 10.1007/978-1-4939-7231-9_4 PubMed DOI

Wohlert J., & Edholm O. (2004). The range and shielding of dipole-dipole interactions in phospholipid bilayers. Biophysical Journal, 87(4), 2433–2445. 10.1529/biophysj.104.044222 PubMed DOI PMC

Zhou S. F., Zhou Z. W., Yang L. P., & Cai J. P. (2009). Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Current Medicinal Chemistry, 16(27), 3480–3675. 10.2174/092986709789057635 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...