Inhibition of NADPH oxidase within midbrain periaqueductal gray decreases pain sensitivity in Parkinson's disease via GABAergic signaling pathway
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
32584140
PubMed Central
PMC8549895
DOI
10.33549/physiolres.934478
PII: 934478
Knihovny.cz E-resources
- MeSH
- Pain drug therapy etiology metabolism pathology MeSH
- Medial Forebrain Bundle drug effects metabolism MeSH
- gamma-Aminobutyric Acid metabolism MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- NADPH Oxidase 4 antagonists & inhibitors MeSH
- Parkinson Disease enzymology metabolism pathology MeSH
- Rats, Sprague-Dawley MeSH
- Pain Threshold drug effects physiology MeSH
- Pyrazolones pharmacology MeSH
- Pyridones pharmacology MeSH
- Signal Transduction drug effects MeSH
- Periaqueductal Gray drug effects metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- gamma-Aminobutyric Acid MeSH
- NADPH Oxidase 4 MeSH
- Nox4 protein, rat MeSH Browser
- Pyrazolones MeSH
- Pyridones MeSH
- setanaxib MeSH Browser
Hypersensitive pain response is observed in patients with Parkinson's disease (PD). However, the signal pathways leading to hyperalgesia still need to be clarified. Chronic oxidative stress is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG) is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role NADPH oxidase (NOX) of the PAG in regulating exaggerated pain evoked by PD. PD was induced by central microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle of rats. Then, Western Blot analysis and ELISA were used to determine NOXs and products of oxidative stress (i.e., 8-isoprostaglandin F2alpha and 8-hydroxy-2'-deoxyguanosine). Pain responses to mechanical and thermal stimulation were further examined in control rats and PD rats. In results, among the NOXs, protein expression of NOX4 in the PAG of PD rats was significantly upregulated, thereby the products of oxidative stress were increased. Blocking NOX4 pathway in the PAG attenuated mechanical and thermal pain responses in PD rats and this was accompanied with decreasing production of oxidative stress. In addition, inhibition of NOX4 largely restored the impaired GABA within the PAG. Stimulation of GABA receptors in the PAG of PD rats also blunted pain responses. In conclusions, NOX4 activation of oxidative stress in the PAG of PD rats is likely to impair the descending inhibitory GABAergic pathways in regulating pain transmission and thereby plays a role in the development of pain hypersensitivity in PD. Inhibition of NOX4 has beneficial effects on the exaggerated pain evoked by PD.
See more in PubMed
ALLEN NJ, KARADOTTIR R, ATTWELL D. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch: Eur J Physiol. 2004;449:132–142. doi: 10.1007/s00424-004-1318-x. PubMed DOI
ALTENHOFER S, KLEIKERS PW, RADERMACHER KA, SCHEURER P, ROB HERMANS JJ, SCHIFFERS P, HO H, WINGLER K, SCHMIDT H. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cellular and molecular life sciences. Cell Mol Life Sci. 2012;69:2327–2343. doi: 10.1007/s00018-012-1010-9. PubMed DOI PMC
BEHBEHANI MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol. 1995;46:575–605. doi: 10.1016/0301-0082(95)00009-K. PubMed DOI
BEISKE AG, LOGE JH, RONNINGEN A, SVENSSON E. Pain in Parkinson’s disease: Prevalence and characteristics. Pain. 2009;141:173–177. doi: 10.1016/j.pain.2008.12.004. PubMed DOI
BENAMAR K, GELLER EB, ADLER MW. Elevated level of the proinflammatory chemokine, RANTES/CCL5, in the periaqueductal grey causes hyperalgesia in rats. Eur J Pharmacol. 2008;592:93–95. doi: 10.1016/j.ejphar.2008.07.009. PubMed DOI
BLANDINI F, ARMENTERO M-T, MARTIGNONI E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat Disord. 2008;14(Suppl 2):S124–S129. doi: 10.1016/j.parkreldis.2008.04.015. PubMed DOI
BORDEN LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int. 1996;29:335–356. doi: 10.1016/0197-0186(95)00158-1. PubMed DOI
CARRIVE P, MORGAN MM. Periaqueductal Gray. In: MAI JK, PAXINOS G, editors. The Human Nervous System. Third Edition. San Diego: Academic Press; 2012. pp. 367–400. DOI
CHAPLAN SR, BACH FW, POGREL JW, CHUNG JM, YAKSH TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63. doi: 10.1016/0165-0270(94)90144-9. PubMed DOI
CONTE A, KHAN N, DEFAZIO G, ROTHWELL JC, BERARDELLI A. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat Rev Neurol. 2013;9:687–697. doi: 10.1038/nrneurol.2013.224. PubMed DOI
CRAIG AD. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol. 1995;361:225–248. doi: 10.1002/cne.903610204. PubMed DOI
DEUMENS R, BLOKLAND A, PRICKAERTS J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002;175:303–317. doi: 10.1006/exnr.2002.7891. PubMed DOI
DJALDETTI R, SHIFRIN A, ROGOWSKI Z, SPRECHER E, MELAMED E, YARNITSKY D. Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology. 2004;62:2171–2175. doi: 10.1212/01.WNL.0000130455.38550.9D. PubMed DOI
GAVAZZI G, BANFI B, DEFFERT C, FIETTE L, SCHAPPI M, HERRMANN F, KRAUSE KH. Decreased blood pressure in NOX1-deficient mice. FEBS Let. 2006;580:497–504. doi: 10.1016/j.febslet.2005.12.049. PubMed DOI
HAO S, LIU S, ZHENG X, ZHENG W, OUYANG H, MATA M, FINK DJ. The role of TNFalpha in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology. 2011;36:664–676. doi: 10.1038/npp.2010.197. PubMed DOI PMC
HASSANZADEH K, RAHIMMI A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J Cell Physiol. 2018;234:23–32. doi: 10.1002/jcp.26865. PubMed DOI
INDEN M, KIM D, GU Y, KITAMURA Y, KONDO J, TSUCHIYA D, TANIGUCHI T, SHIMOHAMA S, AKAIKE A, SUMI S, INOUE K. Pharmacological characteristics of rotational behavior in hemiparkinsonian rats transplanted with mouse embryonic stem cell-derived neurons. J Pharmacol Sci. 2004;96:53–64. doi: 10.1254/jphs.FPJ04010X. PubMed DOI
ISHIDA Y, HASHIGUCHI H, TODAKA K, KUWAHARA I, ISHIZUKA Y, NAKANE H, UCHIMURA D, NISHIMORI T, MITSUYAMA Y. Serotonergic activity in the rat striatum after intrastriatal transplantation of fetal nigra as measured by microdialysis. Brain Res. 1998;788:207–214. doi: 10.1016/S0006-8993(97)01541-2. PubMed DOI
KALLENBORN-GERHARDT W, SCHRODER K, Del TURCO D, LU R, KYNAST K, KOSOWSKI J, NIEDERBERGER E, SHAH AM, BRANDES RP, GEISSLINGER G, SCHMIDTKO A. NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci. 2012;32:10136–10145. doi: 10.1523/JNEUROSCI.6227-11.2012. PubMed DOI PMC
KALLENBORN-GERHARDT W, SCHRODER K, GEISSLINGER G, SCHMIDTKO A. NOXious signaling in pain processing. Pharmacol Ther. 2013;137:309–317. doi: 10.1016/j.pharmthera.2012.11.001. PubMed DOI
KLEMM WR. Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit. 2004;10:RA261–RA273. PubMed
LAM GY, HUANG J, BRUMELL JH. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol. 2010;32:415–430. doi: 10.1007/s00281-010-0221-0. PubMed DOI
MAEGAWA H, MORIMOTO Y, KUDO C, HANAMOTO H, BOKU A, SUGIMURA M, KATO T, YOSHIDA A, NIWA H. Neural mechanism underlying hyperalgesic response to orofacial pain in Parkinson’s disease model rats. Neurosci Res. 2015;96:59–68. doi: 10.1016/j.neures.2015.01.006. PubMed DOI
MILLAN MJ. Descending control of pain. Prog Neurobiol. 2002;66:355. doi: 10.1016/S0301-0082(02)00009-6. PubMed DOI
NANDHAGOPAL R, TROIANO AR, MAK E, SCHULZER M, BUSHNELL MC, STOESSL AJ. Response to heat pain stimulation in idiopathic Parkinson’s disease. Pain Med. 2010;11:834–840. doi: 10.1111/j.1526-4637.2010.00866.x. PubMed DOI
OVERSTREET LS, WESTBROOK GL. Synapse density regulates independence at unitary inhibitory synapses. J Neurosci. 2003;23:2618–2626. doi: 10.1523/JNEUROSCI.23-07-02618.2003. PubMed DOI PMC
REKATSINA M, PALADINI A, PIROLI A, ZIS P, PERGOLIZZI JV, VARRASSI G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review. Adv Ther. 2020;37:113–139. doi: 10.1007/s12325-019-01148-5. PubMed DOI PMC
RICHERSON GB, WU Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol. 2003;90:1363–1374. doi: 10.1152/jn.00317.2003. PubMed DOI
SALVEMINI D, LITTLE JW, DOYLE T, NEUMANN WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med. 2011;51:951–966. doi: 10.1016/j.freeradbiomed.2011.01.026. PubMed DOI PMC
SAMII A, NUTT JG, RANSOM BR. Parkinson’s disease. Lancet. 2004;363:1783–1793. doi: 10.1016/S0140-6736(04)16305-8. PubMed DOI
SCHWARTING RKW, HUSTON JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol. 1996;49:215–266. doi: 10.1016/S0301-0082(96)00015-9. PubMed DOI
SEMYANOV A, WALKER MC, KULLMANN DM, SILVER RA. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 2004;27:262–269. doi: 10.1016/j.tins.2004.03.005. PubMed DOI
SIMON DK, TANNER CM, BRUNDIN P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatric Med. 2020;36:1–12. doi: 10.1016/j.cger.2019.08.002. PubMed DOI PMC
SU J, YIN J, QIN W, SHA S, XU J, JIANG C. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res. 2015;40:621–627. doi: 10.1007/s11064-014-1504-y. PubMed DOI
SWANSON LW. Brain Maps: Structure of the rat brain. New York: Elsevier; 1998.
TANSEY MG, McCOY MK, FRANK-CANNON TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208:1–25. doi: 10.1016/j.expneurol.2007.07.004. PubMed DOI PMC
WANG Q, LIU Y, ZHOU J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener. 2015;4:19. doi: 10.1186/s40035-015-0042-0. PubMed DOI PMC
WASNER G, DEUSCHL G. Pains in Parkinson disease--many syndromes under one umbrella. Nature Rev Neurol. 2012;8:284–294. doi: 10.1038/nrneurol.2012.54. PubMed DOI
WU Y, WANG W, DIEZ-SAMPEDRO A, RICHERSON GB. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron. 2007;56:851–865. doi: 10.1016/j.neuron.2007.10.021. PubMed DOI PMC