Life in the Current: Anatomy and Morphology of Utricularia neottioides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
N18/DBS/000002
Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków
POWR.03.05.00-00Z309/17-00
Integrate JU-Comprehensive Development Programme of the Jagiellonian University as part of the Knowledge Education Development 2014-2020 Operational Programme co-financed by the European Social Fund of the European Union
RVO 67985939
Czech Academy of Sciences
Bolsa de Produtividade - Proc. # 312908/2018-0
Conselho Nacional de Desenvolvimento Científico e Tecnológico
531-D031-D243-200
Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk
PubMed
32586054
PubMed Central
PMC7352640
DOI
10.3390/ijms21124474
PII: ijms21124474
Knihovny.cz E-zdroje
- Klíčová slova
- Cerrado, Lentibulariaceae, aquatic plants, carnivorous plants, cell-wall components, plant anatomy, rheophytes,
- MeSH
- ekosystém MeSH
- fotosyntéza * MeSH
- Magnoliopsida anatomie a histologie fyziologie MeSH
- výhonky rostlin anatomie a histologie fyziologie MeSH
- zvláštnosti životní historie * MeSH
- Publikační typ
- časopisecké články MeSH
Rheophytism is extremely rare in the Utricularia genus (there are four strictly rheophytic species out of a total of about 260). Utricularia neottioides is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. Utricularia neottioides was considered to be trap-free by some authors, suggesting that it had given up carnivory due to its specific habitat. Our aim was to compare the anatomy of rheophytic U. neottioides with an aquatic Utricularia species with a typical linear monomorphic shoot from the section Utricularia, U. reflexa, which grows in standing or very slowly streaming African waters. Additionally, we compared the immunodetection of cell wall components of both species. Light microscopy, histochemistry, scanning, and transmission electron microscopy were used to address our aims. In U. neottioides, two organ systems can be distinguished: organs (stolons, inflorescence stalk) which possess sclerenchyma and are thus resistant to water currents, and organs without sclerenchyma (leaf-like shoots), which are submissive to the water streaming/movement. Due to life in the turbulent habitat, U. neottioides evolved specific characters including an anchor system with stolons, which have asymmetric structures, sclerenchyma and they form adhesive trichomes on the ventral side. This anchor stolon system performs additional multiple functions including photosynthesis, nutrient storage, vegetative reproduction. In contrast with typical aquatic Utricularia species from the section Utricularia growing in standing waters, U. neottioides stems have a well-developed sclerenchyma system lacking large gas spaces. Plants produce numerous traps, so they should still be treated as a fully carnivorous plant.
Zobrazit více v PubMed
Taylor P. The Genus Utricularia: A Taxonomic Monograph. Kew Botanic Gardens; London, UK: 1989.
Miranda V.F.O., Menezes C.G., Silva S.R., Díaz Y.C.A., Rivadavia F. Lentibulariaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro; Rio de Janeiro, Brasil: 2015. [(accessed on 5 April 2020)]. Available online: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB30235.
Flora do Brasil 2020 under Construction. Jardim Botânico do Rio de Janeiro. [(accessed on 30 April 2020)]; Available online: http://floradobrasil.jbrj.gov.br/
Adamec L., Fleischmann A., Pásek K. Biology of the trapless rheophytic Utricularia neottioides: Is it possible to grow this specialized species in cultivation? Carniv. Plant Newslett. (Fullerton) 2015;44:104–114.
Jobson R.W., Baleeiro P.C., Guisande C. In: Carnivorous Plants: Physiology, Ecology, and Evolution. Ellison A.M., Adamec L., editors. Oxford University Press; Oxford, UK: 2018. pp. 89–104.
Rutishauser R., Isler B. Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): Fuzzy Arberian morphology complements classical morphology. Ann. Bot. 2001;88:1173–1202. doi: 10.1006/anbo.2001.1498. DOI
Van Steenis C.G.G.J. Rheophytes of the World. An Account of the Flood-Resistant Flowering Plants and Ferns and the Theory of Autonomous Evolution. Sijthoff & Noordhoff; Alphen aan den Rijn, The Netherlands: Rockville, MA, USA: 1981. 408p with 23 Photographs, 44 Figs.
Müller K., Borsch T. Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Plant Syst. Evol. 2005;250:39–67. doi: 10.1007/s00606-004-0224-1. DOI
Silva S.R., Gibson R., Adamec L., Domínguez Y., Miranda V.F.O. Molecular phylogeny of bladderworts: A wide approach of Utricularia (Lentibulariaceae) species relationships based on six plastidial and nuclear DNA sequences. Mol. Phylogenet. Evol. 2018;118:244–264. doi: 10.1016/j.ympev.2017.10.010. PubMed DOI
Satter R., Rutishauser R. Structural and dynamic descriptions of the development of Utricularia foliosa and U. australis. Can. J. Bot. 1990;68:1989–2003. doi: 10.1139/b90-261. DOI
Adamec L. Ecophysiology of aquatic carnivorous plants. In: Ellison A.M., Adamec L., editors. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press; Oxford, UK: 2018. pp. 256–269.
Adamec L. Biological flora of Central Europe: Utricularia intermedia Hayne, U. ochroleuca R.W. Hartm., U. stygia Thor and U. bremii Heer ex Kölliker. Perspect. Plant Ecol. Evol. Syst. 2020;44:e125520. doi: 10.1016/j.ppees.2020.125520. DOI
Guisande C., Granado-Lorencio C., Andrade-Sossa C., Duque S.R. Bladderworts. Funct. Plant Sci. Biotechnol. 2007;1:58–68.
Rivadavia F. Utricularia neottioides. Carniv. Plant Newslett. 1996;25:46–47.
Irina S., Constantin T. Morpho-structural adaptations of some aquatic carnivorous plant species (Aldrovanda vesiculosa L. and Utricularia vulgaris L.) Buletinul Grădinii Botanice Iaşi. 2007;14:7–12.
Schweingruber F., Kučerová A., Adamec L., Doležal J. Anatomic Atlas of Aquatic and Wetland Plant Stems. Springer; Cham, Switzerland: 2020. DOI
Reut M.S., Świątek P., Miranda V.F.O., Płachno B.J. Living between land and water—Structural and functional adaptations in vegetative organs of bladderworts. 2020. submitted.
Von Luetzelburg P. Beiträge zur Kenntnis der Utricularien. Flora. 1910;100:145–212. doi: 10.1016/S0367-1615(17)32784-2. DOI
Evert R.F., Eichhorn S.E. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. 3rd ed. John Wiley &Sons; Hoboken, NJ, USA: 2006. 601p
Cook C.D.K., Rutishauser R. Podostemaceae. In: Kubitzki K., editor. The Families and Genera of Vascular Plants. Volume 9. Springer; Berlin, Germany: 2007. pp. 304–344.
Grob V., Pfeifer E., Rutishauser R. Morphology, development and regeneration of Thelethylax minutiflora, a Madagascan river-weed (Podostemaceae) Phyton (Horn, Austria) 2007;47:205–229.
Lloyd F.E. The Carnivorous Plants. Chronica Botanica Company; Waltham, MA, USA: 1942.
Rutishauser R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): A pictorial report at the interface of developmental biology and morphological diversification. Ann. Bot. 2016;117:811–832. doi: 10.1093/aob/mcv172. PubMed DOI PMC
Ameka K.G., Pfeifer E., Rutishauser R. Developmental morphology of Saxicolella amicorum and S. submersa (Podostemaceae: Podostemoideae) from Ghana. Bot. J. Linn. Soc. 2002;139:255–273. doi: 10.1046/j.1095-8339.2002.00065.x. DOI
Jäger-Zürn I., Grubert M. Podostemaceae depend on sticky biofilms with respect to attachment to rocks in waterfalls. Int. J. Plant Sci. 2000;161:599–607. doi: 10.1086/314292. DOI
Heide-Jørgensen H. Parasitic Flowering Plants. Koninklijke Brill NV; Leiden, The Netherlands: 2008.
Seilacher A., MacClintock C. Crinoid anchoring strategies for soft-bottom dwelling. Palaios. 2005;20:224–240. doi: 10.2110/palo.2003.p03-70. DOI
Plotnick R.E., Ebey C.M., Zinga A. A radicle solution: Morphology and biomechanics of the Eucalyptocrinites “root” system. Lethaia. 2016;49:130–144. doi: 10.1111/let.12148. DOI
Ferretti A., Ausich W., Corradini C., Corriga M., Schönlaub H. Stars in the Silurian sky: Echinoderm holdfasts from the Carnic Alps, Austria. Geol. Acta. 2016;14:335–347.
Slinger J. The morphology and anatomy of Utricularia transrugosa Stapf. Bothalia. 1954;6:385–406. doi: 10.4102/abc.v6i2.1696. DOI
Rutishauser R. The developmental plasticity of Utricularia aurea (Lentibulariaceae) and its floats. Aquat. Bot. 1993;45:119–143. doi: 10.1016/0304-3770(93)90018-R. DOI
Chormanski T.A. Master’s Thesis. Florida International University; Miami, FL, USA: 2007. Morphology and anatomy of three common Everglade Utricularia species; U. gibba, U. cornuta, and U. subulata.
Brugger J., Rutishauser R. Bau und Entwicklung landbewohnender Utricularia-Arten. Bot. Helv. 1989;99:91–146.
Reut M.S., Płachno B.J. Unusual developmental morphology and anatomy of vegetative organs in Utricularia dichotoma—leaf, shoot and root dynamics. Protoplasma. 2020;257:371–390. doi: 10.1007/s00709-019-01443-6. PubMed DOI PMC
Płachno B.J., Adamec L., Kozieradzka-Kiszkurno M., Świątek P., Kamińska I. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions. Protoplasma. 2014;251:1449–1454. doi: 10.1007/s00709-014-0646-8. PubMed DOI PMC
Fleischmann A. Do we have any evidence that any plants have given up carnivory? Carniv. Plant Newslett. 2011;40:37.
Lustofin K., Świątek P., Miranda V.F.O., Płachno B.J. Flower nectar trichome structure of carnivorous plants from the genus butterworts Pinguicula L. (Lentibulariaceae) Protoplasma. 2020;257:245–259. doi: 10.1007/s00709-019-01433-8. PubMed DOI PMC
Johansen D.A. Plant Microtechnique. McGraw-Hill Book Co.; New York, NY, USA: 1940.
Braune W., Leman A., Taubert H. Praktikum Anatomii Roślin. Państwowe Wydawnictwo Naukowe; Warszawa, Polska: 1975. p. 295.
Slazak B., Kapusta M., Malik SBohdanowicz J., Kuta E., Malec P., Göransson U. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. Planta. 2016;244:1029–1040. doi: 10.1007/s00425-016-2562-y. PubMed DOI PMC
Gawecki R., Sala K., Kurczyńska EU Świątek P., Płachno B.J. Immunodetection of some pectic, arabinogalactan proteins and hemicellulose epitopes in the micropylar transmitting tissue of apomictic dandelions (Taraxacum, Asteraceae, Lactuceae) Protoplasma. 2017;254:657–668. doi: 10.1007/s00709-016-0980-0. PubMed DOI PMC