Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32591567
PubMed Central
PMC7320016
DOI
10.1038/s41598-020-67277-y
PII: 10.1038/s41598-020-67277-y
Knihovny.cz E-zdroje
- MeSH
- glykogen aplikace a dávkování MeSH
- krysa rodu Rattus MeSH
- lékové transportní systémy * MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- protinádorové látky aplikace a dávkování MeSH
- teranostická nanomedicína * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykogen MeSH
- protinádorové látky MeSH
As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both in vitro and in vivo conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Sikes R. Chemistry and pharmacology of anticancer drugs. Br. J. Cancer. 2007;97:1713.
Nussbaumer S, Bonnabry P, Veuthey J, Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta. 2011;85:2265–89. PubMed
Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010;624:25–37. PubMed
Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003;2:347–360. PubMed
Seymour L, et al. Tumouritropism and anticancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br. J. Cancer. 1994;70:636–641. PubMed PMC
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. PubMed
Dadsetan M, et al. Controlled release of doxorubicin from pH-responsive microgels. Acta Biomater. 2014;9:5438–5446. PubMed PMC
Gao S, et al. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B. 2019;7:709–729. PubMed
Bruneau M, et al. Systems for stimuli-controlled release: Materials and applications. J. Control. Release. 2019;294:355–371. PubMed
Jinhyun HL, Yoon Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 2015;125:75–84. PubMed PMC
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013;65:71–9. PubMed
Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 2011;63:170–83. PubMed
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10:487–510. PubMed PMC
Suk JS, Xu Q, Kim N, Hanes J, Ensiqn LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016;99:28–51. PubMed PMC
Luxenhofer R, et al. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–31. PubMed PMC
Ulbricht J, Jordan R, Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials. 2014;35:4848–4861. PubMed
Hrubý M, Filippov S, Štepánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur. Polym. J. 2015;65:82–97.
Verbraeken B, Monnery BD, Lava K, Hoogenboom R. The chemistry of poly(2-oxazoline)s. Eur. Polym. J. 2017;88:451–469.
Bauer M, et al. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): Comparison of in vitro cytotoxicity and hemocompatibility. Mascomolecular Biosci. 2012;12:986–98. PubMed
Konradi R, Pidhatika B, Muhlebach A, Textor M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir. 2008;24:613–616. PubMed
Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012;4:219–33. PubMed PMC
Glassner M, Vergaelen M, Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018;67:32–45.
Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int. J. Nanomedicine. 2010;5:525–532. PubMed PMC
Nguyen PM, Hammond PT. Amphiphilic linear-dendritic triblock copolymers composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and encapsulation properties. Langmuir. 2006;22:7825–32. PubMed
Rudolph C, Lausier J, Naundorf S, Muller RH, Rosenecker J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. 2000;2:269–278. PubMed
Sedlacek O, et al. 19F magnetic resonance imaging of injectable polymeric implants with multiresponsive behavior. Chem. Mater. 2018;30:4892–4896.
Zhao J, Yang H, Li J, Wang Y, Wang X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci. Rep. 2017;7:18014. PubMed PMC
Ganji MD, Mirzaei S, Dalirandeh Z. Molecular origin of drug release by water boiling inside carbon nanotubes from reactive molecular dynamics simulation and DFT perspectives. Sci. Rep. 2017;7:4669. PubMed PMC
Larson N, Hamidreza G. Polymeric Conjugates for Drug Delivery. Chem. Mater. 2012;24:840–853. PubMed PMC
Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012;37:237–280.
Ulery B, Nair L, Laurencin C. Biomedical applications of biodegradable polymers. J. Polym. Sci. B. Polym. Phys. 2011;49:832–864. PubMed PMC
Filippov S, et al. Glycogen as a biodegradable construction nanomaterial for in vivo use. Macromol. Biosci. 2012;12:1731–8. PubMed
Zhang L, et al. Folate-decorated polysaccharide-doxorubicin polymer: Synthesis, characterization, and activity in HeLa cells. Bull. Korean Chem. Soc. 2015;36:1999–2005.
Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002;28:621–630. PubMed
Wang H, et al. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci. Rep. 2017;7:40011. PubMed PMC
Huang S, Huang G. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 2019;26:252–261. PubMed PMC
Sreekumar S, Goycoolea FM, Moerschbacher M, Rivera-Rodriguez G. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci. Rep. 2018;8:4695. PubMed PMC
Babu A, et al. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep. 2017;7:14674. PubMed PMC
Morris G, Kok M, Harding S, Adams G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev. 2010;27:257–284. PubMed
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010;62:3–11. PubMed
Varshosaz J. Dextran conjugates in drug delivery. Expert. Opin. Drug. Deliv. 2012;9:509–23. PubMed
Cascone M, Maltinti S. Hydrogels based on chitosan and dextran as potential drug delivery systems. J. Mater. Sci. Mater. Med. 1999;10:301–307. PubMed
Paleos CM, Sideratou Z, Tsiourvas D. Drug delivery systems based on hydroxyethyl starch. Bioconjug. Chem. 2017;28:1611–1624. PubMed
Xu X, Jha A, Harrington D, Farach-Carson M, Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–3294. PubMed PMC
Smejkalova D, et al. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles. Biomacromolecules. 2014;15:4012–4020. PubMed
Jiratova M, et al. Biological characterization of a novel hybrid copolymer carrier system based on glycogen. Drug Deliv. Transl. Res. 2018;8:73–82. PubMed
Adeva MM, Gonzálen-Lucán M, Donapetry-García C, Fernandéz C, Rodríguez EA. Glycogen metabolism in humans. Biochim. Biophys. 2016;5:85–100. PubMed PMC
Matsui M, Kakut M, Misaki A. Fine structural features of oyster glycogen: mode of multiple branching. Carbohydr. Polym. 1997;31:227–235.
Jean-Luc P, Buléon A, Borsali R, Chanzy H. Ultrastructural aspects of phytoglycogen from cryo-transmission electron microscopy and quasi-elastic light scattering data. Int. J. Biol. Macromol. 1999;26:145–150. PubMed
Vetrik M, et al. Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying. RSC Adv. 2013;3:15282–15289.
Galisova A, et al. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. Mol. Imaging Biol. 2018;21:454–464. PubMed PMC
Bouvain P, et al. Dissociation of 19F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions. Magn. Reson. Mater. Physics, Biol. Med. 2019;32:133–145. PubMed
Lin SP, Brown JJ. MR contrast agents: physical and pharmacologic basics. J. Magn. Reson. Imaging. 2007;25:884–99. PubMed
Kato Y, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89. PubMed PMC