Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence

. 2020 Jun 26 ; 10 (1) : 10411. [epub] 20200626

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32591567
Odkazy

PubMed 32591567
PubMed Central PMC7320016
DOI 10.1038/s41598-020-67277-y
PII: 10.1038/s41598-020-67277-y
Knihovny.cz E-zdroje

As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both in vitro and in vivo conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.

Zobrazit více v PubMed

Sikes R. Chemistry and pharmacology of anticancer drugs. Br. J. Cancer. 2007;97:1713.

Nussbaumer S, Bonnabry P, Veuthey J, Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta. 2011;85:2265–89. PubMed

Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010;624:25–37. PubMed

Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003;2:347–360. PubMed

Seymour L, et al. Tumouritropism and anticancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br. J. Cancer. 1994;70:636–641. PubMed PMC

Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. PubMed

Dadsetan M, et al. Controlled release of doxorubicin from pH-responsive microgels. Acta Biomater. 2014;9:5438–5446. PubMed PMC

Gao S, et al. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B. 2019;7:709–729. PubMed

Bruneau M, et al. Systems for stimuli-controlled release: Materials and applications. J. Control. Release. 2019;294:355–371. PubMed

Jinhyun HL, Yoon Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 2015;125:75–84. PubMed PMC

Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013;65:71–9. PubMed

Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 2011;63:170–83. PubMed

Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10:487–510. PubMed PMC

Suk JS, Xu Q, Kim N, Hanes J, Ensiqn LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016;99:28–51. PubMed PMC

Luxenhofer R, et al. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–31. PubMed PMC

Ulbricht J, Jordan R, Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials. 2014;35:4848–4861. PubMed

Hrubý M, Filippov S, Štepánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur. Polym. J. 2015;65:82–97.

Verbraeken B, Monnery BD, Lava K, Hoogenboom R. The chemistry of poly(2-oxazoline)s. Eur. Polym. J. 2017;88:451–469.

Bauer M, et al. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): Comparison of in vitro cytotoxicity and hemocompatibility. Mascomolecular Biosci. 2012;12:986–98. PubMed

Konradi R, Pidhatika B, Muhlebach A, Textor M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir. 2008;24:613–616. PubMed

Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012;4:219–33. PubMed PMC

Glassner M, Vergaelen M, Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018;67:32–45.

Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int. J. Nanomedicine. 2010;5:525–532. PubMed PMC

Nguyen PM, Hammond PT. Amphiphilic linear-dendritic triblock copolymers composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and encapsulation properties. Langmuir. 2006;22:7825–32. PubMed

Rudolph C, Lausier J, Naundorf S, Muller RH, Rosenecker J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. 2000;2:269–278. PubMed

Sedlacek O, et al. 19F magnetic resonance imaging of injectable polymeric implants with multiresponsive behavior. Chem. Mater. 2018;30:4892–4896.

Zhao J, Yang H, Li J, Wang Y, Wang X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci. Rep. 2017;7:18014. PubMed PMC

Ganji MD, Mirzaei S, Dalirandeh Z. Molecular origin of drug release by water boiling inside carbon nanotubes from reactive molecular dynamics simulation and DFT perspectives. Sci. Rep. 2017;7:4669. PubMed PMC

Larson N, Hamidreza G. Polymeric Conjugates for Drug Delivery. Chem. Mater. 2012;24:840–853. PubMed PMC

Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012;37:237–280.

Ulery B, Nair L, Laurencin C. Biomedical applications of biodegradable polymers. J. Polym. Sci. B. Polym. Phys. 2011;49:832–864. PubMed PMC

Filippov S, et al. Glycogen as a biodegradable construction nanomaterial for in vivo use. Macromol. Biosci. 2012;12:1731–8. PubMed

Zhang L, et al. Folate-decorated polysaccharide-doxorubicin polymer: Synthesis, characterization, and activity in HeLa cells. Bull. Korean Chem. Soc. 2015;36:1999–2005.

Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002;28:621–630. PubMed

Wang H, et al. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci. Rep. 2017;7:40011. PubMed PMC

Huang S, Huang G. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 2019;26:252–261. PubMed PMC

Sreekumar S, Goycoolea FM, Moerschbacher M, Rivera-Rodriguez G. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci. Rep. 2018;8:4695. PubMed PMC

Babu A, et al. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep. 2017;7:14674. PubMed PMC

Morris G, Kok M, Harding S, Adams G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev. 2010;27:257–284. PubMed

Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010;62:3–11. PubMed

Varshosaz J. Dextran conjugates in drug delivery. Expert. Opin. Drug. Deliv. 2012;9:509–23. PubMed

Cascone M, Maltinti S. Hydrogels based on chitosan and dextran as potential drug delivery systems. J. Mater. Sci. Mater. Med. 1999;10:301–307. PubMed

Paleos CM, Sideratou Z, Tsiourvas D. Drug delivery systems based on hydroxyethyl starch. Bioconjug. Chem. 2017;28:1611–1624. PubMed

Xu X, Jha A, Harrington D, Farach-Carson M, Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–3294. PubMed PMC

Smejkalova D, et al. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles. Biomacromolecules. 2014;15:4012–4020. PubMed

Jiratova M, et al. Biological characterization of a novel hybrid copolymer carrier system based on glycogen. Drug Deliv. Transl. Res. 2018;8:73–82. PubMed

Adeva MM, Gonzálen-Lucán M, Donapetry-García C, Fernandéz C, Rodríguez EA. Glycogen metabolism in humans. Biochim. Biophys. 2016;5:85–100. PubMed PMC

Matsui M, Kakut M, Misaki A. Fine structural features of oyster glycogen: mode of multiple branching. Carbohydr. Polym. 1997;31:227–235.

Jean-Luc P, Buléon A, Borsali R, Chanzy H. Ultrastructural aspects of phytoglycogen from cryo-transmission electron microscopy and quasi-elastic light scattering data. Int. J. Biol. Macromol. 1999;26:145–150. PubMed

Vetrik M, et al. Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying. RSC Adv. 2013;3:15282–15289.

Galisova A, et al. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. Mol. Imaging Biol. 2018;21:454–464. PubMed PMC

Bouvain P, et al. Dissociation of 19F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions. Magn. Reson. Mater. Physics, Biol. Med. 2019;32:133–145. PubMed

Lin SP, Brown JJ. MR contrast agents: physical and pharmacologic basics. J. Magn. Reson. Imaging. 2007;25:884–99. PubMed

Kato Y, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cationic fluorinated micelles for cell labeling and 19F-MR imaging

. 2024 Sep 30 ; 14 (1) : 22613. [epub] 20240930

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...