Toxicity assessment of verapamil and its photodegradation products
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000869
Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
PubMed
32601865
DOI
10.1007/s11356-020-09830-w
PII: 10.1007/s11356-020-09830-w
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiovascular drugs, Chronic toxicity, Daphnia magna, Photocatalysed degradation in aqueous solution, Verapamil,
- MeSH
- chemické látky znečišťující vodu * MeSH
- Daphnia * MeSH
- fotolýza MeSH
- verapamil MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- verapamil MeSH
Pathways of photochemical degradation of a cardiovascular drug verapamil under conditions relevant to natural waters and the toxicity of the photoproducts to Daphnia magna were investigated. Photodegradation was shown to proceed via photocatalysed mechanism. Two main photodegradation pathways were recognised: the first leading to hydroxylation at the methylamino position followed by splitting of verapamil molecule into two fragments, and the second providing the main active metabolite of verapamil, norverapamil, and a series of norverapamil isomers, followed again by their splitting at the amino group position. Twenty-two products of photodegradation were identified. Toxicity assays in sublethal concentrations of the parental drug, of the photoproduct mixture, and of norverapamil revealed no direct negative response in Daphnia magna to verapamil. On the other hand, photochemical products significantly lowered the number of juveniles, number of clutches, and body size of Daphnia. The exposition of Daphnia to norverapamil showed the same but even more pronounced effects than its exposition to the mixture of photoproducts, which leads to the conclusion that norverapamil is mainly responsible for the toxicity of photoproduct mixture and represents a noteworthy threat to aquatic invertebrates.
Zobrazit více v PubMed
Ajima NOM, Pandey PK, Kumar K, Poojary N (2017a) Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linneaus, 1758). Comp Biochem Physiol C: Toxicol Pharmacol 196:44–52
Ajima MNO, Pandey PK, Kumar K, Poojary N (2017b) Assessment of mutagenic, hematological and oxidative stress biomarkers in liver of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sublethal verapamil exposure. Drug Chem Toxicol 40:286–294 DOI
Biel-Maeso M, Baena-Nogueras RM, Corada-Fernández C, Lara-Martín PA (2018) Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci Total Environ 612:649–659 DOI
Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in the aquatic environment: a review. Aquat Sci 65:320–341 DOI
Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Anklex GT, Beazley KF, Belanter SE, Berninger JP, Carriquiriborde P, Coors A, Deleo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DG, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229 DOI
Bu Q, Shi X, Yu G, Huang J, Wang B (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg Contam 2:154–147
Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess 24:711–732 DOI
Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159 DOI
Godoy AA, Kummrow F, Pamplin PAZ (2015) Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment - A review. Chemosphere 138:281–291
Grabicová K, Grabic R, Bláha M, Kumar V, Cerveny D, Feredova G, Randak T (2015) Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res 72:145–153 DOI
Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98 DOI
Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364 DOI
Klementová Š, Wagnerová DM (1994) Photocatalytic effect on Fe(III) on oxidation of two-carbon substrates related to natural waters. Collect Czechoslov Chem Commun 59:1066–1076 DOI
Klementová Š, Kahoun D, Doubková L, Frejlachová K, Dušáková M, Zlámal M (2017) Catalytic photodegradation of pharmaceuticals–homogeneous and heterogeneous photocatalysis. Photochem Photobiol Sci 16:67–71 DOI
Klementová Š, Hornychová L, Šorf M, Zemanová J, Kahoun D (2019) Toxicity of atrazine and the products of its homogeneous photocatalytic degradation on the aquatic organisms Lemna minor and Daphnia magna. Environ Sci Pollut Res 26:27259–27267 DOI
Kostich MS, Flick RW, Batt AL, Mash HE, Boone JS, Furlong ET, Kolpin DW, Glassmeyer ST (2017) Aquatic concentrations of chemical analytes compared to ecotoxicity estimates. Sci Total Environ 579:1649–1657 DOI
Krishna S, Maslani A, Izdebski T, Horakova M, Klementova S, Špatenka P (2016) Degradation of verapamil hydrochloride in water by gliding arc discharge. Chemosphere 152:47–54 DOI
Le T-H, Lim E-S, Lee S-K, Park J-S, Kim Y-H, Min J (2011) Toxicity evaluation of verapamil and tramadol based on toxicity assay and expression patterns of Dhb, Vtg, Arnt, CYP4, and CYP314 in Daphnia magna. Environ Toxicol 26:515–523
Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environmental and soil. Environ Pollut 187:193–201 DOI
Mezzelani M, Gorbi S, Regoli F (2018) Pharmaceuticals in the aquatic environments: evidence o emerged threat and future challenges for marine organisms. Mar Environ Res 140:41–60 DOI
Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille MP (2016) Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res 23:4992–5001 DOI
OECD Guidelines for the testing of chemicals, Guideline 211 (2012) Daphnia magna reproduction test. Available from: [ oecd-ilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en ] Accessed: [2020-16-01]
Overturf MD, Overturf CL, Baxter D, Hala DN, Constantine L, Venables B, Huggett DB (2012) Early life-stage toxicity of eight pharmaceuticals to the fathead minnow, Pimephales promelas. Archiv Environ Con Tox 6:455–464 DOI
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673 DOI
PubChem Database (2020). National Center for Biotechnology Information. PubChem Database. Verapamil, CID=250
Saari NG, Casan SW, Brooks BW (2017) Global scanning assessment of calcium channel blockers in the environment: review and analysis of occurrence, ecotoxicology and hazards in aquatic systems. Chemosphere 189:466–478 DOI
Sangion A, Gramatica P (2016) PBT assessment and prioritization of contaminants of emerging concern: pharmaceuticals. Environ Res 147:297–306 DOI
Santos L, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro M (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461-462:302–316 DOI
Sawicki W (2002) Pharmacokinetics of verapamil and norverapamil from controlled release floating pellets in humans. Eur J Pharm Biopharm 53:29–35 DOI
Steinbach C, Fedorova G, Prokes M, Grabicova K, Machova J, Grabic R, Valentova O, Kocour M, Kroupova H (2013) Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.). Sci Total Environ 461-462:198–206 DOI
Taylor D, Senac T (2014) Human pharmaceutical products in the environment–the “problem” in perspective. Chemosphere 115:95–99 DOI
TIBCO Software Inc (2017) Statistica (data analysis software system), version 13. http://statistica.io
Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H (2000) Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manag Sci 56:455–462 DOI
Tixier C, Sancelme M, Äit-Äissa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526 DOI
Trautwein C, Kümmerer K, Metzger JW (2008) Aerobic biodegradability of the calcium channel antagonist verapamil and identification of a microbial dead-end transformation product studied by LC-MS/MS. Chemosphere 72:442–450 DOI
Villegas-Navarroa A, Rosas-L E, Reyes JL (2003) The heart of Daphnia magna: effects of four cardioactive drugs. Comp Biochem Phys C 136:127–134
Yunlong L, Wenshan G, Huu Hao N, Long Duc N, Faisal Ibney H, Zhang J, Shuang L, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal wastewater treatment. Sci Total Environ 473-474:619–641 DOI
Zhi-Hua L, Ping L, Randak T (2010) Ecotoxicological effects of short-term exposure to a human pharmaceutical verapamil in juvenile rainbow trout (Oncorhyncus mykiss). Comp Biochem Phys C Toxicol Pharmacol 152:385–391 DOI
Zhi-Hua L, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, Ping L, Randak T (2011) Chronic toxicity of verapamil on juvenile rainbow trout (Onkorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185:870–880 DOI
Zhu B, Zonja B, Gonzalez O, Sans C, Pérez S, Barceló D, Esplugas E, Xu K, Qiang Z (2015) Degradation kinetics and pathways of three calcium channel blockers under UV irradiation. Water Res 86:9–16 DOI