Analysis and Testing of a Suitable Compatible Electrode's Material for Continuous Measurement of Glucose Concentration
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32629993
PubMed Central
PMC7374362
DOI
10.3390/s20133666
PII: s20133666
Knihovny.cz E-zdroje
- Klíčová slova
- biosensor, electrode, enzyme glucose oxidase,
- MeSH
- biosenzitivní techniky * MeSH
- elektrochemické techniky * MeSH
- elektrody * MeSH
- glukosa analýza MeSH
- glukosaoxidasa * MeSH
- zlato MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa MeSH
- glukosaoxidasa * MeSH
- zlato MeSH
The subject of the submitted work is the proposal of electrodes for the continual measurement of the glucose concentration for the purpose of specifying further hemodynamic parameters. The proposal includes the design of the electronic measuring system, the construction of the electrodes themselves and the functionality of the entire system, verified experimentally using various electrode materials. The proposed circuit works on the basis of micro-ammeter measuring the size of the flowing electric current and the electrochemical measurement method is used for specifying the glucose concentration. The electrode system is comprised of two electrodes embedded in a silicon tube. The solution consists of the measurement with three types of materials, which are verified by using three solutions with a precisely given concentration of glucose in the form of a mixed solution and enzyme glucose oxidase. For the testing of the proposed circuit and the selection of a suitable material, the testing did not take place on measurements in whole blood. For the construction of the electrodes, the three most frequently used materials for the construction of electrodes used in clinical practice for sensing biopotentials, specifically the materials Ag/AgCl, Cu and Au, were used. The performed experiments showed that the material Ag/AgCl, which had the greatest sensitivity for the measurement even without the enzyme, was the most suitable material for the electrode. This conclusion is supported by the performed statistical analysis. On the basis of the testing, we can come to the conclusion that even if the Ag/AgCl electrode appears to be the most suitable, showing high stability, gold-plated electrodes showed stability throughout the measurement similarly to Ag/AgCl electrodes, but did not achieve the same qualities in sensitivity and readability of the measured results.
Zobrazit více v PubMed
Hwang D.W., Lee S., Seo M., Chung T.D. Recent advances in electrochemical non-enzymatic glucose sensors–A review. Anal. Chim. Acta. 2018;1033:1–34. doi: 10.1016/j.aca.2018.05.051. PubMed DOI
Güemes M., Rahman S.A., Hussain K. What is a normal blood glucose? Arch. Dis. Childhood. 2016;101:569–574. doi: 10.1136/archdischild-2015-308336. PubMed DOI
Kalra S., Gupta Y. Ambulatory glucose profile: Flash glucose monitoring. JPMA J. Pak. Med. Assoc. 2015;65:1360–1362. PubMed
Clarke W.L., Cox D., Gonder-Frederick L.A., Carter W., Pohl S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10:622–628. doi: 10.2337/diacare.10.5.622. PubMed DOI
Williams D.L., Doig A.R., Korosi A. Electrochemical-enzymatic analysis of blood glucose and lactate. Anal. Chem. 1970;42:118–121. doi: 10.1021/ac60283a032. PubMed DOI
Schmelzeisen-Redeker G., Staib A., Strasser M., Müller U., Schoemaker M. Overview of a novel sensor for continuous glucose monitoring. J. Diabetes Sci. Technol. 2013;7:808–814. doi: 10.1177/193229681300700402. PubMed DOI PMC
Bao J., Furumoto K., Yoshimoto M., Fukunaga K., Nakao K. Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochem. Eng. J. 2003;13:69–72. doi: 10.1016/S1369-703X(02)00120-1. DOI
Anderson J.C., Leaver K.D., Rawlings R.D., Leevers P.S. Materials Science for Engineers. CRC Press; Boca Raton, FL, USA: 2004.
Kalkman C.J. LabVIEW: A software system for data acquisition, data analysis, and instrument control. J. Clin. Monit. 1995;11:51–58. doi: 10.1007/BF01627421. PubMed DOI
Rodbard D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016;18:S2-3–S2-13. doi: 10.1089/dia.2015.0417. PubMed DOI PMC
Rodbard D. Continuous glucose monitoring: A review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 2017;19:S-25–S-37. doi: 10.1089/dia.2017.0035. PubMed DOI PMC
Lind M., Polonsky W., Hirsch I.B., Heise T., Bolinder J., Dahlqvist S., Schwarz E., Ólafsdóttir A.F., Frid A., Wedel H., et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: The GOLD randomized clinical trial. JAMA. 2017;317:379–387. doi: 10.1001/jama.2016.19976. PubMed DOI
Beck R.W., Riddlesworth T., Ruedy K., Ahmann A., Bergenstal R., Haller S., Kollman C., Kruger D., McGill J.B., Polonsky W., et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: The DIAMOND randomized clinical trial. Jama. 2017;317:371–378. doi: 10.1001/jama.2016.19975. PubMed DOI
Chen C., Zhao X.L., Li Z.H., Zhu Z.G., Qian S.H., Flewitt A.J. Current and emerging technology for continuous glucose monitoring. Sensors. 2017;17:182. doi: 10.3390/s17010182. PubMed DOI PMC
Sparacino G., Facchinetti A., Cobelli C. “Smart” continuous glucose monitoring sensors: On-line signal processing issues. Sensors. 2010;10:6751–6772. doi: 10.3390/s100706751. PubMed DOI PMC
Lee H., Hong Y.J., Baik S., Hyeon T., Kim D.H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018;7:1701150. doi: 10.1002/adhm.201701150. PubMed DOI
Adolfsson P., Parkin C.G., Thomas A., Krinelke L.G. Selecting the appropriate continuous glucose monitoring system–a practical approach. Eur. Endocrinol. 2018;14:24. doi: 10.17925/EE.2018.14.1.24. PubMed DOI PMC
Cappon G., Acciaroli G., Vettoretti M., Facchinetti A., Sparacino G. Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics. 2017;6:65. doi: 10.3390/electronics6030065. DOI
Gia T.N., Ali M., Dhaou I.B., Rahmani A.M., Westerlund T., Liljeberg P., Tenhunen H. IoT-based continuous glucose monitoring system: A feasibility study. Procedia Comput. Sci. 2017;109:327–334. doi: 10.1016/j.procs.2017.05.359. DOI
Shokrekhodaei M., Quinones S. Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors. 2020;20:1251. doi: 10.3390/s20051251. PubMed DOI PMC
Haq A.U., Li J.P., Khan J., Memon M.H., Nazir S., Ahmad S., Khan G.A., Ali A. Intelligent Machine Learning Approach for Effective Recognition of Diabetes in E-Healthcare Using Clinical Data. Sensors. 2020;20:2649. doi: 10.3390/s20092649. PubMed DOI PMC
Li J., Koinkar P., Fuchiwaki Y., Yasuzawa M. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring. Biosens. Bioelectron. 2016;86:90–94. doi: 10.1016/j.bios.2016.06.037. PubMed DOI
Li Y., Yao Z., Yue W., Zhang C., Gao S., Wang C. Reusable, Non-Invasive, and Ultrafast Radio Frequency Biosensor Based on Optimized Integrated Passive Device Fabrication Process for Quantitative Detection of Glucose Levels. Sensors. 2020;20:1565. doi: 10.3390/s20061565. PubMed DOI PMC
Ribet F., Stemme G., Roxhed N. Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring. Biosens. Bioelectron. 2017;90:577–583. doi: 10.1016/j.bios.2016.10.007. PubMed DOI
Ribet F., Stemme G., Roxhed N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices. 2018;20:101. doi: 10.1007/s10544-018-0349-6. PubMed DOI PMC
Donnelly E., La Spada L. Electromagnetic and thermal nanostructures: From waves to circuits. Eng. Res. Express. 2020;2:015045. doi: 10.1088/2631-8695/ab7a78. DOI
La Spada L., Vegni L. Near-zero-index wires. Opt. Express. 2017;25:23699–23708. doi: 10.1364/OE.25.023699. PubMed DOI
Fiedorova K., Augustynek M., Klinkovsky T. World Congress on Medical Physics and Biomedical Engineering 2018. Springer; Singapore: 2019. Proposal of Electrode for Measuring Glucose Concentration in Blood.
Le T.T.T., Tran P.D., Pham X.T., Tong D.H., Dang M.C. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection. Adv. Nat. Sci. Nanosci. Nanotechnol. 2010;1:035004. doi: 10.1088/2043-6254/1/3/035004. DOI
Bankar S.B., Bule M.V., Singhal R.S., Ananthanarayan L. Glucose oxidase—An overview. Biotechnol. Adv. 2009;27:489–501. doi: 10.1016/j.biotechadv.2009.04.003. PubMed DOI
Hermanson G.T. Bioconjugate Techniques. Academic Press; Cambridge, MA, USA: 2013.
Scheller F., Schubert F. Biosensors. Elsevier; Amsterdam, The Netherlands: 1991.
Facchinetti A. Continuous glucose monitoring sensors: Past, present and future algorithmic challenges. Sensors. 2016;16:2093. doi: 10.3390/s16122093. PubMed DOI PMC
Conway J., Watts S. A software Engineering Approach to LabVIEW. Prentice Hall Professional; Upper Saddle River, NJ, USA: 2003.
Bryant D.E., Harvey A.F. DAQ Configuration System and Method for Configuring Channels in a Data Acquisition Device. No 5,764,546. U.S. Patent. 1998 Jun 9;
Amor-Gutiérrez O., Rama E.C., Costa-García A., Fernández-Abedul M.T. Based maskless enzymatic sensor for glucose determination combining ink and wire electrodes. Biosens. Bioelectron. 2017;93:40–45. doi: 10.1016/j.bios.2016.11.008. PubMed DOI
Modern Trends and Applications of Intelligent Methods in Biomedical Signal and Image Processing