Analysis and Testing of a Suitable Compatible Electrode's Material for Continuous Measurement of Glucose Concentration

. 2020 Jun 30 ; 20 (13) : . [epub] 20200630

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32629993

The subject of the submitted work is the proposal of electrodes for the continual measurement of the glucose concentration for the purpose of specifying further hemodynamic parameters. The proposal includes the design of the electronic measuring system, the construction of the electrodes themselves and the functionality of the entire system, verified experimentally using various electrode materials. The proposed circuit works on the basis of micro-ammeter measuring the size of the flowing electric current and the electrochemical measurement method is used for specifying the glucose concentration. The electrode system is comprised of two electrodes embedded in a silicon tube. The solution consists of the measurement with three types of materials, which are verified by using three solutions with a precisely given concentration of glucose in the form of a mixed solution and enzyme glucose oxidase. For the testing of the proposed circuit and the selection of a suitable material, the testing did not take place on measurements in whole blood. For the construction of the electrodes, the three most frequently used materials for the construction of electrodes used in clinical practice for sensing biopotentials, specifically the materials Ag/AgCl, Cu and Au, were used. The performed experiments showed that the material Ag/AgCl, which had the greatest sensitivity for the measurement even without the enzyme, was the most suitable material for the electrode. This conclusion is supported by the performed statistical analysis. On the basis of the testing, we can come to the conclusion that even if the Ag/AgCl electrode appears to be the most suitable, showing high stability, gold-plated electrodes showed stability throughout the measurement similarly to Ag/AgCl electrodes, but did not achieve the same qualities in sensitivity and readability of the measured results.

Zobrazit více v PubMed

Hwang D.W., Lee S., Seo M., Chung T.D. Recent advances in electrochemical non-enzymatic glucose sensors–A review. Anal. Chim. Acta. 2018;1033:1–34. doi: 10.1016/j.aca.2018.05.051. PubMed DOI

Güemes M., Rahman S.A., Hussain K. What is a normal blood glucose? Arch. Dis. Childhood. 2016;101:569–574. doi: 10.1136/archdischild-2015-308336. PubMed DOI

Kalra S., Gupta Y. Ambulatory glucose profile: Flash glucose monitoring. JPMA J. Pak. Med. Assoc. 2015;65:1360–1362. PubMed

Clarke W.L., Cox D., Gonder-Frederick L.A., Carter W., Pohl S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10:622–628. doi: 10.2337/diacare.10.5.622. PubMed DOI

Williams D.L., Doig A.R., Korosi A. Electrochemical-enzymatic analysis of blood glucose and lactate. Anal. Chem. 1970;42:118–121. doi: 10.1021/ac60283a032. PubMed DOI

Schmelzeisen-Redeker G., Staib A., Strasser M., Müller U., Schoemaker M. Overview of a novel sensor for continuous glucose monitoring. J. Diabetes Sci. Technol. 2013;7:808–814. doi: 10.1177/193229681300700402. PubMed DOI PMC

Bao J., Furumoto K., Yoshimoto M., Fukunaga K., Nakao K. Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochem. Eng. J. 2003;13:69–72. doi: 10.1016/S1369-703X(02)00120-1. DOI

Anderson J.C., Leaver K.D., Rawlings R.D., Leevers P.S. Materials Science for Engineers. CRC Press; Boca Raton, FL, USA: 2004.

Kalkman C.J. LabVIEW: A software system for data acquisition, data analysis, and instrument control. J. Clin. Monit. 1995;11:51–58. doi: 10.1007/BF01627421. PubMed DOI

Rodbard D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016;18:S2-3–S2-13. doi: 10.1089/dia.2015.0417. PubMed DOI PMC

Rodbard D. Continuous glucose monitoring: A review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 2017;19:S-25–S-37. doi: 10.1089/dia.2017.0035. PubMed DOI PMC

Lind M., Polonsky W., Hirsch I.B., Heise T., Bolinder J., Dahlqvist S., Schwarz E., Ólafsdóttir A.F., Frid A., Wedel H., et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: The GOLD randomized clinical trial. JAMA. 2017;317:379–387. doi: 10.1001/jama.2016.19976. PubMed DOI

Beck R.W., Riddlesworth T., Ruedy K., Ahmann A., Bergenstal R., Haller S., Kollman C., Kruger D., McGill J.B., Polonsky W., et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: The DIAMOND randomized clinical trial. Jama. 2017;317:371–378. doi: 10.1001/jama.2016.19975. PubMed DOI

Chen C., Zhao X.L., Li Z.H., Zhu Z.G., Qian S.H., Flewitt A.J. Current and emerging technology for continuous glucose monitoring. Sensors. 2017;17:182. doi: 10.3390/s17010182. PubMed DOI PMC

Sparacino G., Facchinetti A., Cobelli C. “Smart” continuous glucose monitoring sensors: On-line signal processing issues. Sensors. 2010;10:6751–6772. doi: 10.3390/s100706751. PubMed DOI PMC

Lee H., Hong Y.J., Baik S., Hyeon T., Kim D.H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018;7:1701150. doi: 10.1002/adhm.201701150. PubMed DOI

Adolfsson P., Parkin C.G., Thomas A., Krinelke L.G. Selecting the appropriate continuous glucose monitoring system–a practical approach. Eur. Endocrinol. 2018;14:24. doi: 10.17925/EE.2018.14.1.24. PubMed DOI PMC

Cappon G., Acciaroli G., Vettoretti M., Facchinetti A., Sparacino G. Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics. 2017;6:65. doi: 10.3390/electronics6030065. DOI

Gia T.N., Ali M., Dhaou I.B., Rahmani A.M., Westerlund T., Liljeberg P., Tenhunen H. IoT-based continuous glucose monitoring system: A feasibility study. Procedia Comput. Sci. 2017;109:327–334. doi: 10.1016/j.procs.2017.05.359. DOI

Shokrekhodaei M., Quinones S. Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors. 2020;20:1251. doi: 10.3390/s20051251. PubMed DOI PMC

Haq A.U., Li J.P., Khan J., Memon M.H., Nazir S., Ahmad S., Khan G.A., Ali A. Intelligent Machine Learning Approach for Effective Recognition of Diabetes in E-Healthcare Using Clinical Data. Sensors. 2020;20:2649. doi: 10.3390/s20092649. PubMed DOI PMC

Li J., Koinkar P., Fuchiwaki Y., Yasuzawa M. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring. Biosens. Bioelectron. 2016;86:90–94. doi: 10.1016/j.bios.2016.06.037. PubMed DOI

Li Y., Yao Z., Yue W., Zhang C., Gao S., Wang C. Reusable, Non-Invasive, and Ultrafast Radio Frequency Biosensor Based on Optimized Integrated Passive Device Fabrication Process for Quantitative Detection of Glucose Levels. Sensors. 2020;20:1565. doi: 10.3390/s20061565. PubMed DOI PMC

Ribet F., Stemme G., Roxhed N. Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring. Biosens. Bioelectron. 2017;90:577–583. doi: 10.1016/j.bios.2016.10.007. PubMed DOI

Ribet F., Stemme G., Roxhed N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices. 2018;20:101. doi: 10.1007/s10544-018-0349-6. PubMed DOI PMC

Donnelly E., La Spada L. Electromagnetic and thermal nanostructures: From waves to circuits. Eng. Res. Express. 2020;2:015045. doi: 10.1088/2631-8695/ab7a78. DOI

La Spada L., Vegni L. Near-zero-index wires. Opt. Express. 2017;25:23699–23708. doi: 10.1364/OE.25.023699. PubMed DOI

Fiedorova K., Augustynek M., Klinkovsky T. World Congress on Medical Physics and Biomedical Engineering 2018. Springer; Singapore: 2019. Proposal of Electrode for Measuring Glucose Concentration in Blood.

Le T.T.T., Tran P.D., Pham X.T., Tong D.H., Dang M.C. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection. Adv. Nat. Sci. Nanosci. Nanotechnol. 2010;1:035004. doi: 10.1088/2043-6254/1/3/035004. DOI

Bankar S.B., Bule M.V., Singhal R.S., Ananthanarayan L. Glucose oxidase—An overview. Biotechnol. Adv. 2009;27:489–501. doi: 10.1016/j.biotechadv.2009.04.003. PubMed DOI

Hermanson G.T. Bioconjugate Techniques. Academic Press; Cambridge, MA, USA: 2013.

Scheller F., Schubert F. Biosensors. Elsevier; Amsterdam, The Netherlands: 1991.

Facchinetti A. Continuous glucose monitoring sensors: Past, present and future algorithmic challenges. Sensors. 2016;16:2093. doi: 10.3390/s16122093. PubMed DOI PMC

Conway J., Watts S. A software Engineering Approach to LabVIEW. Prentice Hall Professional; Upper Saddle River, NJ, USA: 2003.

Bryant D.E., Harvey A.F. DAQ Configuration System and Method for Configuring Channels in a Data Acquisition Device. No 5,764,546. U.S. Patent. 1998 Jun 9;

Amor-Gutiérrez O., Rama E.C., Costa-García A., Fernández-Abedul M.T. Based maskless enzymatic sensor for glucose determination combining ink and wire electrodes. Biosens. Bioelectron. 2017;93:40–45. doi: 10.1016/j.bios.2016.11.008. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modern Trends and Applications of Intelligent Methods in Biomedical Signal and Image Processing

. 2021 Jan 27 ; 21 (3) : . [epub] 20210127

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...