ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis

. 2020 Dec ; 228 (5) : 1611-1626. [epub] 20200806

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32634250

Adventitious root initiation (ARI) is a de novo organogenesis program and a key adaptive trait in plants. Several hormones regulate ARI but the underlying genetic architecture that integrates the hormonal crosstalk governing this process remains largely elusive. In this study, we use genetics, genome editing, transcriptomics, hormone profiling and cell biological approaches to demonstrate a crucial role played by the APETALA2/ETHYLENE RESPONSE FACTOR 115 transcription factor. We demonstrate that ERF115 functions as a repressor of ARI by activating the cytokinin (CK) signaling machinery. We also demonstrate that ERF115 is transcriptionally activated by jasmonate (JA), an oxylipin-derived phytohormone, which represses ARI in NINJA-dependent and independent manners. Our data indicate that NINJA-dependent JA signaling in pericycle cells blocks early events of ARI. Altogether, our results reveal a previously unreported molecular network involving cooperative crosstalk between JA and CK machineries that represses ARI.

Zobrazit více v PubMed

Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, Farmer EE. 2013. Role of NINJA in root jasmonate signaling. Proceedings of the National Academy of Sciences, USA 110: 15473-15478.

An C, Li L, Zhai Q, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q et al. 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proceedings of the National Academy of Sciences, USA 114: E8930-E8939.

Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W, De Rybel B, Vermeer JEM, Geldner N. 2018. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 555: 529-533.

Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, Novák O. 2015. Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell 27: 1955-1967.

Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T et al. 2011. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proceedings of the National Academy of Sciences, USA 108: 16128-16132.

Bellini C, Pacurar DI, Perrone I. 2014. Adventitious roots and lateral roots: similarities and differences. Annual Review of Plant Biology 65: 639-666.

Campos ML, Yoshida Y, Major IT, De Oliveira Ferreira D, Weraduwage SM, Froehlich JE, Johnson BF, Kramer DM, Jander G, Sharkey TD et al. 2016. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nature Communications 7: 1-10.

Causier B, Ashworth M, Guo W, Davies B. 2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiology 158: 423-438.

Che P, Lall S, Nettleton D, Howell SH. 2006. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology 141: 620-637.

Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J et al. 2012. The arabidopsis Mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24: 2898-2916.

Chico JM, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, Solano R. 2014. Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell 26: 1967-1980.

Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671.

Chini A, Gimenez-Ibanez S, Goossens A, Solano R. 2016. Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology 33: 147-156.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743.

De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S et al. 2010. A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Current Biology 20: 1697-1706.

Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. 2014. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105: 147-157.

Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. 2009. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology 5: 344-350.

Gasperini D, Chételat A, Acosta IF, Goossens J, Pauwels L, Goossens A, Dreos R, Alfonso E, Farmer EE. 2015. Multilayered organization of jasmonate signalling in the regulation of root growth. PLoS Genetics 11: 1-27.

Godoy M, Franco-Zorrilla JM, Pérez-Pérez J, Oliveros JC, Lorenzo Ó, Solano R. 2011. Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. The Plant Journal 66: 700-711.

Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. 2018. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proceedings of the National Academy of Sciences, USA 115: E10768-E10777.

Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C. 2009. Phenotypic plasticity of adventitious rooting in arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21: 3119-3132.

Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G et al. 2012. Auxin controls arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24: 2515-2527.

Heyman J, Canher B, Bisht A, Christiaens F, De Veylder L. 2018. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science 131: jcs208215.

Heyman J, Cools T, Canher B, Shavialenka S, Traas J, Vercauteren I, Van Den Daele H, Persiau G, De Jaeger G, Sugimoto K et al. 2016. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nature Plants 2: 1-7.

Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J, Vercauteren I, Vanderauwera S, Vandepoele K, De Jaeger G, Van Der Straeten D et al. 2013. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342: 860-863.

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70: 377-406.

Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L et al. 2017. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology 175: 1158-1174.

Ikeuchi M, Shibata M, Rymen B, Iwase A, Bgman AM, Watt L, Coleman D, Favero DS, Takahashi T, Ahnert SE et al. 2018. A gene regulatory network for cellular reprogramming in plant regeneration. Plant and Cell Physiology 59: 765-777.

Kagale S, Links MG, Rozwadowski K. 2010. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in arabidopsis. Plant Physiology 152: 1109-1134.

Kieber JJ, Schaller GE. 2014. Cytokinins. The Arabidopsis Book 12: e0168.

Kong X, Tian H, Yu Q, Zhang F, Wang R, Gao S, Xu W, Liu J, Shani E, Fu C et al. 2018. Phb3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in arabidopsis. Cell Reports 22: 1350-1363.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.

Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21: 3152-3169.

Lakehal A, Bellini C. 2018. Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum 165: 90-100.

Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novák O, Păcurar DI, Perrone I, Jobert F et al. 2019a. A molecular framework for the control of adventitious rooting by TIR1/AFB2-AUX/IAA-dependent auxin signaling in Arabidopsis. Molecular Plant 12: 1499-1514.

Lakehal A, Dob A, Novák O, Bellini C. 2019b. A DAO1-mediated circuit controls auxin and jasmonate crosstalk robustness during adventitious root initiation in arabidopsis. International Journal of Molecular Sciences 20: 4428.

Lakehal A, Ranjan A, Bellini C. 2020. Multiple roles of jasmonates in shaping rhizotaxis: emerging integrators. In: Champion A, Laplaze L (eds) Jasmonate in plant biology. Methods in Molecular Biology. New York, NY, USA: Humana, 3-22.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359.

Li B, Dewey CN. 2014. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12: 41-74.

Mehrnia M, Balazadeh S, Zanor MI, Mueller-Roeber B. 2013. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. Plant Physiology 162: 842-857.

Miyawaki K, Matsumoto-Kitano M, Kakimoto T. 2004. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. The Plant Journal 37: 128-138.

Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T. 2006. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences, USA 103: 16598-16603.

Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiology 140: 411-432.

Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Vanden Bossche R, Sewell J, Gil E et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788-791.

Rittenberg D, Foster GL. 1940. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. Journal of Biological Chemistry 133: 737-744.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature methods 9: 676-682.

Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-407.

Shyu C, Figueroa P, DePew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howe GA. 2012. JAZ8 lacks a canonical degron and has an ear motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24: 536-550.

Smolen GA, Pawlowski L, Wilensky SE, Bender J. 2002. Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in arabidopsis. Genetics 161: 1235-1246.

Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G et al. 2005. Auxin and light control of adventitious rooting in Arabidopsis. Plant Cell 17: 1343-1359.

Staswick PE, Sut W, Howell SH. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, USA 89: 6837-6840.

Steffens B, Rasmussen A. 2016. The physiology of adventitious roots. Plant Physiology 170: 603-617.

Sukumar P, Maloney GS, Muday GK. 2013. Localized induction of the ATP-Binding Cassette B19 auxin transporter enhances adventitious root formation in arabidopsis. Plant Physiology 162: 1392-1405.

Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, Doležal K. 2012. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8: 1-14.

Tarazona S, Garcıa-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential expression in RNA-seq: a matter of depth. Genome Research 21: 2213-2223.

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661-665.

Thireault C, Shyu C, Yoshida Y, St. Aubin B, Campos ML, Howe GA. 2015. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. The Plant Journal 82: 669-679.

Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16: 1-12.

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111: 1021-1058.

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. 2003. Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532-2550.

Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091-1094.

Xing H-L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J, Dong L. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14: 372.

Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470-2483.

Yang S, Poretska O, Sieberer T. 2018. ALTERED MERISTEM PROGRAM1 restricts shoot meristem proliferation and regeneration by limiting HD-ZIP III-mediated expression of RAP2.6l. Plant Physiology 177: 1580-1594.

Zhang F, Yao J, Ke J, Zhang L, Lam VQ, Xin XF, Zhou XE, Chen J, Brunzelle J, Griffin PR et al. 2015. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525: 269-273.

Zhang G, Zhao F, Chen L, Pan Y, Sun L, Bao N, Zhang T, Cui CX, Qiu Z, Zhang Y et al. 2019. Jasmonate-mediated wound signalling promotes plant regeneration. Nature Plants 5: 491-497.

Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, Scheres B. 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942-956.e14.

Zhu Z, An F, Feng Y, Li P, Xue L, Jiang Z, Kim J-m, To TK, Li W, Zhang X et al. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences, USA 108: 12539-12544.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...