The Response of Maize to Inoculation with Arthrobacter sp. and Bacillus sp. in Phosphorus-Deficient, Salinity-Affected Soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Research Grants- Bi-nationally Supervised Degree
Deutscher Akademischer Austauschdienst
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund - Project Centre for Experimental Plant Biology
PubMed
32635586
PubMed Central
PMC7409341
DOI
10.3390/microorganisms8071005
PII: microorganisms8071005
Knihovny.cz E-zdroje
- Klíčová slova
- P deficiency, bacterial inoculation, maize, phytohormone production, plant growth, salinity stress,
- Publikační typ
- časopisecké články MeSH
Salinity and phosphorus (P) deficiency are among the most serious soil factors constraining crop productivity. A proposed strategy for alleviating these stresses is supporting plants by inoculation with growth-promoting rhizobacteria (PGPR). Here, a comparison of the ability of two maize composite and two F1 hybrid varieties to tolerate a P deficiency in either a saline or a non-saline environment showed that the uptake of nutrients by all four entries was significantly reduced by the imposition of both soil salinity and P deficiency, and that their growth was compromised to a similar extent. Subsequently, the ameliorative effect of inoculation with three strains of either Arthrobacter sp. or Bacillus sp. in an environment, which suffered simultaneously from salinity and P deficiency, was investigated. Inoculation with each of the strains was found to limit the plants' uptake of sodium cations, to increase their uptake of potassium cations, and to enhance their growth. The extent of the growth stimulation was more pronounced for the composite varieties than for the F1 hybrid ones, although the amount of biomass accumulated by the latter, whether the plants had been inoculated or not, was greater than that of the former varieties. When the bacterial strains were cultured in vitro, each of them was shown as able to produce the phytohormones auxin, abscisic acid, gibberellins, and cytokinins. The implication is that since the presence in the rhizospere of both Arthrobacter sp. and Bacillus sp. strains can support the growth of maize in salinity-affected and P deficient soils in a genotype-dependent fashion, it is important to not only optimize the PGPR strain used for inoculation, but also to select maize varieties which can benefit most strongly from an association with these bacteria.
Department of Plant Biology Faculty of Sciences University of Douala P O Box 24157 Douala Cameroon
Faculty of Life sciences Humboldt University of Berlin Invalidenstraße 42 10115 Berlin Germany
Zobrazit více v PubMed
de Azevedo Neto A.D., Prisco J.T., Enéas-Filho J., Abreu C.E.B.d., Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 2006;56:87–94. doi: 10.1016/j.envexpbot.2005.01.008. DOI
Abbas G., Chen Y., Khan F., Feng Y., Palta J., Siddique K. Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy. 2018;8:155. doi: 10.3390/agronomy8080155. DOI
Takam-Fongang G.M., Kamdem C.B., Kane G.Q. Adoption and impact of improved maize varieties on maize yields: Evidence from central Cameroon. Rev. Dev. Econ. 2019;23:172–188. doi: 10.1111/rode.12561. DOI
Kouam E., Ndo S., Marie Solange M., Chotangui A., Tankou C. Genotypic variation in tolerance to salinity of common beans cultivated in Western Cameroon as assessed at germination and during early seedling growth. Open Agric. 2017;2 doi: 10.1515/opag-2017-0064. DOI
Fankem H., Tchuisseu Tchakounte G.V., Ngo N.L., Nguesseu N.G., Nwaga D., Etoa F.-X. Maize (Zea mays) growth promotion by rock-phosphate solubilising bacteria isolated from nutrient deficient soils of Cameroon. Afr. J. Microbiol. Res. 2014;8:3570–3579. doi: 10.5897/AJMR2014.6934. DOI
Niu X., Song L., Xiao Y., Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 2017;8:2580. doi: 10.3389/fmicb.2017.02580. PubMed DOI PMC
Jiang H., Qi P., Wang T., Chi X., Wang M., Chen M., Chen N., Pan L. Role of halotolerant phosphate--solubilising bacteria on growth promotion of peanut (Arachis hypogaea) under saline soil. Ann. Appl. Biol. 2018;174 doi: 10.1111/aab.12473. DOI
Dartora J., Guimarães V., Menezes C., Freiberger M., Castoldi G., Gonçalves E. Maize response to inoculation with strains of plant growth-promoting bactéria. Revista Brasileira de Engenharia Agrícola e Ambiental. 2016;20:606–611. doi: 10.1590/1807-1929/agriambi.v20n7p606-611. DOI
Long H.H., Schmidt D.D., Baldwin I.T. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE. 2008;3:e2702. doi: 10.1371/journal.pone.0002702. PubMed DOI PMC
Egamberdieva D. Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant Soil Environ. 2010;56:570–573. doi: 10.17221/75/2010-PSE. DOI
Tchuisseu Tchakounté G.V., Berger B., Patz S., Fankem H., Ruppel S. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiol. Res. 2018;214:47–59. doi: 10.1016/j.micres.2018.05.008. PubMed DOI
Kirkpatrick D.S., Bishop S.H. Simplified wet ash procedure for total phosphorus analysis of organophosphonates in biological samples. Anal. Chem. 1971;43:1707–1709. doi: 10.1021/ac60306a046. PubMed DOI
Novak O., Hauserova E., Amakorova P., Dolezal K., Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry. 2008;69:2214–2224. doi: 10.1016/j.phytochem.2008.04.022. PubMed DOI
Novak O., Henykova E., Sairanen I., Kowalczyk M., Pospisil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., Novák O. Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell. 2015;27:1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC
Novák O., Tarkowski P., Tarkowská D., Doležal K., Lenobel R., Strnad M. Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal. Chim. Acta. 2003;480:207–218. doi: 10.1016/S0003-2670(03)00025-4. DOI
Tureckova V., Novak O., Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–399. doi: 10.1016/j.talanta.2009.06.027. PubMed DOI
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI
Rittenberg D.F.L. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biochem. Chem. 1940;133:737–744.
Hossain M.A., Jahiruddin M., Khatun A. Response of maize varieties to zinc fertilization. Bangladesh J. Agric. Res. 2011;36 doi: 10.3329/bjar.v36i3.9272. DOI
Tang H., Niu L., Wei J., Chen X., Chen Y. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and na+ uptake inhibition. Front. Plant. Sci. 2019;10:856. doi: 10.3389/fpls.2019.00856. PubMed DOI PMC
Talbi Zribi O., Abdelly C., Debez A. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.) Plant. Biol (Stuttg) 2011;13:872–880. doi: 10.1111/j.1438-8677.2011.00450.x. PubMed DOI
Phang T.H., Shao G., Liao H., Yan X., Lam H.M. High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of ‘Pi-tolerant’ soybean. Physiol. Plant. 2009;135:412–425. doi: 10.1111/j.1399-3054.2008.01200.x. PubMed DOI
Talbi Zribi O., Barhoumi Z., Kouas S., Ghandour M., Slama I., Abdelly C. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. J. Plant Physiol. 2015;189:1–10. doi: 10.1016/j.jplph.2015.08.007. PubMed DOI
Wissuwa M., Gamat G., Ismail A.M. Is root growth under phosphorus deficiency affected by source or sink limitations? J. Exp. Bot. 2005;56:1943–1950. doi: 10.1093/jxb/eri189. PubMed DOI
Aziz T., Sabir M., Farooq M., Maqsood M., Ahmad H. Phosphorus Deficiency in Plants: Responses, Adaptive Mechanisms, and Signaling. In: Hakeem K., Rehman R., Tahir I., editors. Plant Signaling: Understanding the Molecular Crosstalk. Springer; New Delhi, India: 2013.
Pan J., Peng F., Xue X., You Q., Zhang W., Huang C.H. The growth promotion of two salt-tolerant plant groups with pgpr inoculation: A meta-analysis. Sustainability. 2019;11:378. doi: 10.3390/su11020378. DOI
Fahad S., Hussain S., Saud S., Hassan S., Tanveer M., Ihsan M.Z., Shah A.N., Ullah A., Nasrullah, Khan F., et al. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant. Physiol. Biochem. PPB. 2016;103:191–198. doi: 10.1016/j.plaphy.2016.03.001. PubMed DOI
Silberbush M., Ben-Asher J. The effect of NaCl concentration on NO3−, K+ and orthophosphate-P influx to peanut roots. Sci. Hortic. 1989;39:279–287. doi: 10.1016/0304-4238(89)90121-0. DOI
Kaya C., Higgs D., Kirnak H. The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. J. Plant Physiol. 2001;27:3–4.
Grattan S.R., Grieve C.M. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1998;78:127–157. doi: 10.1016/S0304-4238(98)00192-7. DOI
Alam s., Cui Z.-J., Yamagishi T., Ishii R. Rice cultivar variation in the growth response to inoculation of free-living rhizobacteria. Plant. Produc. Sci. 2003;6:50–51. doi: 10.1626/pps.6.50. DOI
Lima E., Neto V., Araujo J., De Alcântara Neto F., Bonifacio A., Rodrigues A. Varieties of lima bean shows different growth responses when inoculated with Bacillus sp., a plant growth-promoting bacteria. Biosci. J. 2016;32:1221–1233. doi: 10.14393/BJ-v32n5a2016-32932. DOI
Berger B., Patz S., Ruppel S., Dietel K., Faetke S., Junge H., Becker M. Successful formulation and application of plant growth-promoting Kosakonia radicincitans in maize cultivation. BioMed Res. Int. 2018;2018:6439481. doi: 10.1155/2018/6439481. PubMed DOI PMC
Rojas-Tapias D., Moreno-Galván A., Pardo-Díaz S., Obando M., Rivera D., Bonilla R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays) Appl. Soil Ecol. 2012;61:264–272. doi: 10.1016/j.apsoil.2012.01.006. DOI
Han Q.Q., Lu X.P., Bai J.P., Qiao Y., Pare P.W., Wang S.M., Zhang J.L., Wu Y.N., Pang X.P., Xu W.B., et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front. Plant. Sci. 2014;5:525. doi: 10.3389/fpls.2014.00525. PubMed DOI PMC
Ana María G.-L., Delgado A. Effect of Bacillus subtilis on phosphorus uptake by cucumber as affected by iron oxides and the solubility of the phosphorus source. Agr. Food Sci. 2016;25:216–224. doi: 10.23986/afsci.56862. DOI
de Freitas J.R., Banerjee M.R., Germida J.J. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) Biol. Fert. Soils. 1997;24:358–364. doi: 10.1007/s003740050258. DOI
Egamberdieva D., Davranov K., Wirth S., Hashem A., Abd Allah E.F. Impact of soil salinity on the plant-growth - promoting and biological control abilities of root associated bacteria. Saudi J. Biol. Sci. 2017;24:1601–1608. doi: 10.1016/j.sjbs.2017.07.004. PubMed DOI PMC
Zahid M., Abbasi M.K., Hameed S., Rahim N. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.) Front. Microbiol. 2015;6:207. doi: 10.3389/fmicb.2015.00207. PubMed DOI PMC
Numan M., Bashir S., Khan Y., Mumtaz R., Shinwari Z.K., Khan A.L., Khan A., Al-Harrasi A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 2018;209:21–32. doi: 10.1016/j.micres.2018.02.003. PubMed DOI
Irum N., Asghari B., Hassan T. Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr. J. Biotechnol. 2009;8:5762–5768. doi: 10.5897/AJB09.1176. DOI
Shahzad R., Waqas M., Khan A.L., Asaf S., Khan M.A., Kang S.M., Yun B.W., Lee I.J. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant. Physiol. Biochem. PPB. 2016;106:236–243. doi: 10.1016/j.plaphy.2016.05.006. PubMed DOI
Upadhyay S., Singh D.P., Saikia R. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 2009;59:489–496. doi: 10.1007/s00284-009-9464-1. PubMed DOI
Kim M.-J., Radhakrishnan R., Kang S.-M., You Y.-H., Jeong E.-J., Kim J.-G., Lee I.-J. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol. Mol. Biol. Plants. 2017;23:1–10. doi: 10.1007/s12298-017-0449-4. PubMed DOI PMC