Proteomic analysis of Rickettsia akari proposes a 44 kDa-OMP as a potential biomarker for Rickettsialpox diagnosis

. 2020 Jul 08 ; 20 (1) : 200. [epub] 20200708

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32640994

Grantová podpora
VEGA 2/0057/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International
VEGA 2/0068/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International
VEGA 2/0052/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International
VH20172020012 Ministerstvo Vnitra České Republiky - International
907930101413 Ministry of defense of Czech Republic - International
L01509 Ministerstvo Školství, Mládeže a Tělovýchovy - International
APVV19-0066 Agentúra na Podporu Výskumu a Vývoja - International
APVV19-0519 Agentúra na Podporu Výskumu a Vývoja - International

Odkazy

PubMed 32640994
PubMed Central PMC7341715
DOI 10.1186/s12866-020-01877-6
PII: 10.1186/s12866-020-01877-6
Knihovny.cz E-zdroje

BACKGROUND: Rickettsialpox is a febrile illness caused by the mite-borne pathogen Rickettsia akari. Several cases of this disease are reported worldwide annually. Nevertheless, the relationship between the immunogenicity of R. akari and disease development is still poorly understood. Thus, misdiagnosis is frequent. Our study is aiming to identify immunogenic proteins that may improve disease recognition and enhance subsequent treatment. To achieve this goal, two proteomics methodologies were applied, followed by immunoblot confirmation. RESULTS: Three hundred and sixteen unique proteins were identified in the whole-cell extract of R. akari. The most represented protein groups were found to be those involved in translation, post-translational modifications, energy production, and cell wall development. A significant number of proteins belonged to amino acid transport and intracellular trafficking. Also, some proteins affecting the virulence were detected. In silico analysis of membrane enriched proteins revealed 25 putative outer membrane proteins containing beta-barrel structure and 11 proteins having a secretion signal peptide sequence. Using rabbit and human sera, various immunoreactive proteins were identified from which the 44 kDa uncharacterized protein (A8GP63) has demonstrated a unique detection capability. It positively distinguished the sera of patients with Rickettsialpox from other rickettsiae positive human sera. CONCLUSION: Our proteomic analysis certainly contributed to the lack of knowledge of R. akari pathogenesis. The result obtained may also serve as a guideline for a more accurate diagnosis of rickettsial diseases. The identified 44 kDa uncharacterized protein can be certainly used as a unique marker of rickettsialpox or as a target molecule for the development of more effective treatment.

Zobrazit více v PubMed

Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, et al. Plasmids and Rickettsial evolution: insight from Rickettsia felis. PLoS One. 2007;2:1–17. PubMed PMC

Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. Infect Genet Evol. 2014;25:122–137. doi: 10.1016/j.meegid.2014.03.014. PubMed DOI

Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev. 2011;86:379–405. PubMed

Gillespie JJ, Drisco TP, Verhoeve VI, Utsuki T, Husseneder C, Chouljenko VN, et al. Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol Evol. 2014;7:35–56. PubMed PMC

Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, et al. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One. 2008;3:21–27. PubMed PMC

Huebner R, Jellison W, Pomerantz C. Rickettsialpox-a newly recognized rickettsial disease. IV. Isolation of a rickettsia apparently identical with the causative agent of rickettsialpox from Allodermanyssus sanguineus. A rodent mite. Public Heal Rep. 1946;61:1677–1682. PubMed

Huebner R, Jellison W, CA Rickettsialpox-a newly recognized rickettsial disease. V. Recovery of Rickettsia akari from a house mouse (Mus musculus) Public Heal Rep. 1947;62:777–780. PubMed

Ogawa M, Takahashi M, Matsutani M, Takada N, Noda S, Saijo M. Obligate intracellular bacteria diversity in unfed Leptotrombidium scutellare larvae highlights novel bacterial endosymbionts of mites. Microbiol Immunol. 2020;64:1–9. PubMed

Jackson EB, Danauskas JX, Coale MC, Smadel JE. Recovery of Rickettsia akari from the korean vole Microtus fortis pelliceus. Am J Epidemiol. 1957;66:301–308. PubMed

Huebner RJ, Stamps PAC. Rickettsialpox; a newly recognized rickettsial disease; isolation of the etiological agent. Public Heal Rep. 1946;61(45):1605–1614. PubMed

Radulovic S, Feng HM, Morovic M, Djelalija B, Popov V, Crocquet-Valdes P, et al. Isolation of Rickettsia akari from a patient in a region where mediterranean spotted fever is endemic. Clin Infect Dis. 1996;22:216–220. PubMed

Dzelalija B, Punda-Polic V, Medic A, Dobec M. Rickettsiae and rickettsial diseases in Croatia: implications for travel medicine. Travel Med Infect Dis. 2016;14:436–443. PubMed

Terzin A, Gaon J. Some viral and rickettsial infections in Bosnia and Herzegovina: a sero-epidemiological study. Bull World Heal Organ. 1956;15:299–316. PubMed PMC

Fan M-Y, Walker D, Yu S-R, Liu Q-H. Epidemiology and ecology of rickettsial diseases in the People’s republic of China. Rev Infect Dis. 1987;9:823–840. PubMed

Rose HM. The clinical manifestations and laboratory diagnosis of rickettsialpox. Ann Intern Med. 1949;31:871–883. PubMed

Fuller H, Murray E, Ayres J, Snyder J, Potash L. Studies of rickettsialpox. I. Recovery of the causative agent from house mice in Boston, Massachusetts. Am J Hyg. 1951;54:82–100. PubMed

Boyd AS. Rickettsialpox. Infect Dis Dermatol. 1997;15:313–318. PubMed

Koss T, Carter EL, Grossman ME, Silvers DN, Rabinowitz AD, Singleton J, et al. Increased detection of Rickettsialpox in a New York City Hospital following the Anthrax outbreak of 2001: use of immunohistochemistry for the rapid confirmation of cases in an era of bioterrorism. Arch Dermatol. 2003;139:1545–1552. PubMed

Bennett SG, Comer JA, Smith HM, Webb JP. Serologic evidence of a Rickettsia akari-like infection among wild-caught rodents in Orange County and humans in Los Angeles County, California. J Vector Ecol. 2007;32:198. PubMed

Hebert GA, Tzianabos T, Gamble WC, Chappell WA. Development and characterization of high-titered, group-specific fluorescent-antibody reagents for direct identification of rickettsiae in clinical specimens. J Clin Microbiol. 1980;11:503–507. PubMed PMC

Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, et al. Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 2007;3:0103–0114. PubMed PMC

Chao CC, Chelius D, Zhang T, Daggle L, Ching WM. Proteome analysis of Madrid E strain of Rickettsia prowazekii. Proteomics. 2004;4:1280–1292. PubMed

Renesto P, Ogata H, Audic S, Claverie JM, Raoult D. Some lessons from Rickettsia genomics. FEMS Microbiol Rev. 2005;29:99–117. PubMed

Renesto P, Azza S, Dolla A, Fourquet P, Vestris G, Gorvel JP, et al. Proteome analysis of Rickettsia conorii by two-dimensional gel electrophoresis coupled with mass spectrometry. FEMS Microbiol Lett. 2005;245:231–238. PubMed

Ogawa M, Renesto P, Azza S, Moinier D, Fourquet P, Gorvel JP, et al. Proteomne analysis of Rickettsia felis highlights the expression profile of intracellular bacteria. Proteomics. 2007;7:1232–1248. PubMed

Pornwiroon W, Bourchookarn A, Paddock CD, Macaluso KR. Proteomic analysis of Rickettsia parkeri strain Portsmouth. Infect Immun. 2009;77:5262–5271. PubMed PMC

Qi Y, Xiong X, Wang X, Duan C, Jia Y, Jiao J, et al. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis. PLoS One. 2013;8:1–13. PubMed PMC

Pérez-Llarena FJ, Bou G. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Front Microbiol. 2016:1–21. PubMed PMC

Sahni SK, Rydkina E. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol. 2009;4:323–339. PubMed PMC

Wang L, Coppel RL. Triton X-114 phase partitioning for antigen characterization. Methods Mol Med. 2002;72:581–585. PubMed

Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–1615. PubMed PMC

Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A, Sonoyama M, et al. SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation. 2008;2:417–421. PubMed PMC

Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. A hidden Markov model method, capable of predicting and discriminating β-barrel outer membrane proteins. BMC Bioinformatics. 2004;5:1–13. PubMed PMC

Sears KT, Ceraul SM, Gillespie JJ, Allen ED, Popov VL, Ammerman NC, et al. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. PLoS Pathog. 2012;8:1–17. PubMed PMC

Karkouri K, El KM, Armstrong N, Azza S, Fournier PE, Raoult D. Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp. Front Microbiol. 2017;8:1–16. PubMed PMC

Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, et al. Wholly rickettsia! Reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. MBio. 2017;8:1–27. PubMed PMC

Coolbaugh JC, Progar JJ, Weiss E. Enzymatic activities of cell-free extracts of Rickettsia typhi. Infect Immun. 1976;14:298–305. PubMed PMC

Sahni S, Narra H, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 2014;8:1265–1288. PubMed PMC

Putman M, Van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 2000;64:672–693. PubMed PMC

Gillespie JJ, Phan IQH, Driscoll TP, Guillotte ML, Lehman SS, Rennoll-Bankert KE, et al. The rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. Pathog Dis. 2016;74:1–13. PubMed PMC

Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol. 2009;7:703–714. PubMed PMC

Chan YGY, Riley SP. Martinez JJ, Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front Microbiol. 2010;1:1–10. PubMed PMC

Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D. Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol Biol Evol. 2005;22:2073–2083. PubMed

Uchiyama T, Kawano H, Kusuhara Y. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 2006;8:801–809. PubMed

Li H, Walker DH. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog. 1998;24:289–298. PubMed

Chan YGY, Cardwell M, Hermanas T, Uchiyama T, Martinez JJ. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, Clathrin and Caveolin 2- dependent manner. Cell Microbiol. 2009;11:629–644. PubMed PMC

Fournier PE, Roux V, Raoult D. Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol. 1998;48:839–849. PubMed

Dubuisson JF, Vianney A, Hugouvieux-Cotte-Pattat N, Lazzaroni JC. Tol-pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. Microbiology. 2005;151:3337–3347. PubMed

Heinzen RA. Rickettsial actin-based motility: behavior and involvement of cytoskeletal regulators. Ann N Y Acad Sci. 2003;990:535–547. PubMed

Reed SCO, Lamason RL, Risca VI, Abernathy E, Welch MD. Rickettsia actin-based motility occurs in distinct phases mediated by different actin Nucleators. Curr Biol. 2014;24:98–103. PubMed PMC

Welch MD, Way M. Arp2 / 3-mediated actin-based motility : a tail of pathogen abuse. Cell Host Microbe. 2014;14:242–255. PubMed PMC

Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature. 2004;427:457–461. PubMed

Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Hackstadt T. Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One. 2009;4:1–11. PubMed PMC

Audia JP, Patton MC, Winkler HH. DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl Environ Microbiol. 2008;74:7809–7812. PubMed PMC

McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, et al. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol. 2004;186:5842–5855. PubMed PMC

Yu YQ, Gilar M, Lee PJ, Bouvier ESP, Gebler JC. Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem. 2003;75:6023–6028. PubMed

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–362. PubMed

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85. PubMed

Dresler J, Klimentova J, Pajer P, Salovska B, Fucikova AM, Chmel M, et al. Quantitative Proteome Profiling of Coxiella burnetii Reveals Major Metabolic and Stress Differences Under Axenic and Cell Culture Cultivation. Front Microbiol. 2019;10:1–13. PubMed PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–1372. PubMed

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–1805. PubMed

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–2526. PubMed PMC

Shevchenko A, Tomas H, Havliš J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2007;1:2856–2860. PubMed

Ge Y, Rikihisa Y. Surface-exposed proteins of Ehrlichia chaffeensis. Infect Immun. 2007;75:3833–3841. PubMed PMC

Mruk DD, Cheng CY. Enhanced chemiluminescence (ECL) for routine immunoblotting. Spermatogenesis. 2011;1:121–122. PubMed PMC

Zhang W, Liu G, Tang F, Shao J, Lu Y, Bao Y, et al. Pre-absorbed immunoproteomics: a novel method for the detection of Streptococcus suis surface proteins. PLoS One. 2011;6. PubMed PMC

Valáriková J, Sekeyová Z, Škultéty L, Bohácsová M, Quevedo-Diaz M. New way of purification of pathogenic Rickettsiae reducing health risks. Acta Virol. 2016;60:206–210. PubMed

Nielsen H, Tsirigos KD, Brunak S, von Heijne G. A brief history of protein sorting prediction. Protein J. 2019;38:200–216. doi: 10.1007/s10930-019-09838-3. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314. PubMed PMC

El-Manzalawy Y, Dobbs D, Honavar V. Predicting flexible length linear B-cell epitopes. Comput Syst Bioinformatics Conf. 2008;7:121–132. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...