Intraspecific Hybrids Versus Purebred: A Study of Hatchery-Reared Populations of Sterlet Acipenser ruthenus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
642893
European Commission
PubMed
32645877
PubMed Central
PMC7401548
DOI
10.3390/ani10071149
PII: ani10071149
Knihovny.cz E-zdroje
- Klíčová slova
- aquaculture, fitness-related traits, hybrid, restocking, sturgeon,
- Publikační typ
- časopisecké články MeSH
Hatchery-reared sterlet originating from the Danube and Volga river basins that showed population-discriminatory alleles on at least one microsatellite locus were used to produce purebred (within-population) and hybrid crosses to evaluate intraspecific hybridization with respect to the genetic polymorphism and physiological fitness of fish for commercial aquaculture and, conservation programs. Reciprocal crossing assessed the effect of parent position. The fish were reared in indoor and outdoor tanks and monitored over 504 days for growth traits. The highest final mean body weight (144.9 ± 59.5 g) was recorded in the Danube (♀) × Volga (♂) hybrid and the highest survival in the Volga (♀) × Danube (♂) hybrid. The Volga purebred exhibited the lowest mean body weight (124.8 ± 57.6 g). A set of six microsatellites was used to evaluate the heterozygosity. The mean number of alleles was highest in the Danube (♀) × Volga (♂) hybrid and lowest in the Volga purebred, suggesting an influence of the parent position in the hybridization matrix. The higher level of genetic polymorphism, as in the Danube (♀) × Volga (♂) hybrid, may confer greater fitness in a novel environment. Our analysis revealed that the intraspecific hybrids performed better than the purebred fish in the controlled and suboptimal rearing conditions.
Zobrazit více v PubMed
Grande L., Bemis W.E. Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes. J. Vertebr. Paleontol. 1991;11:1–121. doi: 10.1080/02724634.1991.10011424. DOI
Bronzi P., Chebanov M., Michaels J.T., Wei Q., Rosenthal H., Gessner J. Sturgeon meat and caviar production: Global update 2017. J. Appl. Ichthyol. 2019;35:257–266. doi: 10.1111/jai.13870. DOI
IUCN—The International Union for Conservation of Nature 2013 . IUCN Red List of Threatened Species. IUCN; Gland, Switzerland: 2013. Version 2013.2.
Berg L.S. Ryby Presnykh vod SSSR i Sopredelnykh Stran. Cz; Moskwa, Russia: 1948. p. 467. AN SSSR.
Sokolov L.I., Vasil’ev V.P. Acipenser ruthenus Linneaus, 1758. In: Holčik J., editor. The Freshwater Fishes of Europe, Vol. 1, Part II, General Introduction to Fishes, Acipenseriformes. AULA-Verlag; Wiesbaden, Germany: 1989. pp. 227–262.
Fopp-Bayat D., Kuzniar P., Kolman R., Liszewski T., Kucinski M. Genetic analysis of six sterlet (Acipenser ruthenus) populations-recommendations for the plan of restitution in the Dniester River. Iran. J. Fish. Sci. 2015;14:634–645.
Chebanov M., Billard R. The culture of sturgeons in Russia: Production of juveniles for stocking and meat for human consumption. Aquat. Living Resour. 2001;14:375–381. doi: 10.1016/S0990-7440(01)01122-6. DOI
Jarić I., Gessner J. Analysis of publications on sturgeon research between 1996 and 2010. Scientometrics. 2011;90:715–735. doi: 10.1007/s11192-011-0583-7. DOI
Reinartz R. Sturgeons in the Danube River: Biology, Status, Conservation. Literature Study; IAD; Vienna, Austria: 2002.
Birstein V.J., Waldman J.R., Bemis W.E. Sturgeon Biodiversity and Conservation. Vol. 17 Springer Science & Business Media; Berlin, Germany: 2006.
Bloesch J., Jones T., Reinartz R., Striebel B. An action plan for the conservation of sturgeons (Acipenseridae) in the Danube River Basin. Österr. Wasser-und Abfallwirtsch. 2006;58:81–88. doi: 10.1007/BF03165708. DOI
Guti G., Gaebele T. Long-term changes of sterlet (Acipenser ruthenus) population in the Hungarian section of the Danube. Opusc. Zool. Budapest. 2009;40:17–25.
Bloesch J. Major obstacles for Danube sturgeon spawning migration: The Iron Gate dams and the navigation project in the lower Danube. Danube News. 2016;33:11–13.
Reinartz R., Peterí A., Friedrich T., Sandu C. Ex-situ conservation for Danube River sturgeons—Concept, facts and outlook. Danube News. 2016;33:6–7.
Friedrich T. Danube Sturgeons: Past and Future. In: Schmutz S., Sendzimir J., editors. Riverine Ecosystem Management: Science for Governing towards a Sustainable Future. Vol. 8. Springer; Berlin/Heidelberg, Germany: 2018. pp. 507–518.
Reinartz R., Lippold S., Lieckfeldt D., Ludwig A. Population genetic analyses of Acipenser ruthenus as a prerequisite for the conservation of the uppermost Danube population. J. Appl. Ichthyol. 2011;27:477–483. doi: 10.1111/j.1439-0426.2011.01693.x. DOI
Robinson Z.L., Coombs J.A., Hudy M., Nislow K.H., Letcher B.H., Whiteley A.R. Experimental test of genetic rescue in isolated populations of brook trout. Mol. Ecol. 2017;26:4418–4433. doi: 10.1111/mec.14225. PubMed DOI
Drauch A.M., Rhodes O.E., Jr. Genetic evaluation of the lake sturgeon reintroduction program in the Mississippi and Missouri Rivers. N. Am. J. Fish. Manag. 2007;27:434–442. doi: 10.1577/M06-024.1. DOI
Schreier A.D., Rodzen J., Ireland S., May B. Genetic techniques inform conservation aquaculture of the endangered Kootenai River white sturgeon Acipenser transmontanus. Endanger. Species Res. 2012;16:65–75. doi: 10.3354/esr00387. DOI
Gessner J., Arndt G.M., Fredrich F., Ludwig A., Kirschbaum F., Bartel R., von Nordheim H. Remediation of Atlantic Sturgeon Acipenser oxyrinchus in the Oder River: Background and First Results. In: Williot P., Rochard E., Desse-Berset N., Kirschbaum F., Gessner J., editors. Biology and Conservation of the European Sturgeon Acipenser sturio L. 1758. Springer; Berlin/Heidelberg, Germany: 2011. p. 663.
Boscari E., Barmintseva A., Pujolar J.M., Doukakis P., Mugue N., Congiu L. Species and hybrid identification of sturgeon caviar: A new molecular approach to detect illegal trade. Mol. Ecol. Resour. 2014;14:489–498. doi: 10.1111/1755-0998.12203. PubMed DOI
Fitzpatrick S.W., Bradburd G.S., Kremer C.T., Salerno P.E., Angeloni L.M., Funk W.C. Genomic and Fitness Consequences of Genetic Rescue in Wild Populations. Curr. Biol. 2020;30:517–522. doi: 10.1016/j.cub.2019.11.062. PubMed DOI
Facon B., Pointier J.P., Jarne P., Sarda V., David P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 2008;18:363–367. doi: 10.1016/j.cub.2008.01.063. PubMed DOI
Lippman Z.B., Zamir D. Heterosis: Revisiting the magic. Trends Genet. 2007;23:60–66. doi: 10.1016/j.tig.2006.12.006. PubMed DOI
Rius M., Darling J.A. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol. Evol. 2014;29:233–242. doi: 10.1016/j.tree.2014.02.003. PubMed DOI
Frankham R., Ballou J.D., Eldridge M.D.B., Lacy R.C., Ralls K., Dudash M.R., Fenster C.B. Predicting the Probability of Outbreeding Depression. Conserv. Biol. 2011;25:465–475. doi: 10.1111/j.1523-1739.2011.01662.x. PubMed DOI
Audet C.L., Wilson C.C., Pitcher T.E. Effects of intraspecific hybridisation between two hatchery-reared strains of Atlantic salmon, Salmo salar, on juvenile survival and fitness-related traits. Fish. Manag. Ecol. 2017;24:1–9. doi: 10.1111/fme.12195. DOI
Edmands S. Hybrid vigour and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution. 1999;53:1757–1768. doi: 10.1111/j.1558-5646.1999.tb04560.x. PubMed DOI
Edmands S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 2007;16:463–475. doi: 10.1111/j.1365-294X.2006.03148.x. PubMed DOI
Gela D., Rodina M., Linhart O. Řízená Reprodukce Jeseterů [The Artificial Reproduction of the Sturgeons (Acipenser)] Research Institute of Fish Culture and Hydrobiology University of South Bohemia; Vodňany, Czech Republic: 2008. p. 24. (Methodology Edition (Technology Series)).
Štěch L., Linhart O., Shelton W.L., Mims S.D. Minimally invasive surgical removal of ovulated eggs of paddlefish (Polyodon spathula) Aquac. Int. 1999;7:129–133. doi: 10.1023/A:1009253806766. DOI
Dettlaff T.A., Ginzburg A.S., Schmalhausen O.I. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer Science & Business Media; London, UK: 1993. p. 313.
Börk K., Drauch A., Israel J.A., Pedroia J., Rodzen J., May B. Development of new microsatellite primers for green sturgeon and white sturgeon. Conserv. Genet. 2008;9:973–979. doi: 10.1007/s10592-007-9417-9. DOI
Welsh A.B., Blumberg M., May B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol. Ecol. Notes. 2003;3:47–55. doi: 10.1046/j.1471-8286.2003.00346.x. DOI
King T.L., Lubinski B.A., Spidle A.P. Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv. Genet. 2001;2:103–119. doi: 10.1023/A:1011895429669. DOI
McQuown E.C., Sloss B.L., Sheehan R.J., Rodzen J., Tranah G.J., May B. Microsatellite analysis of genetic variation in sturgeon: New primer sequences for Scaphirhynchus and Acipenser. Trans. Am. Fish. Soc. 2000;129:1380–1388. doi: 10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2. DOI
Havelka M., Hulák M., Rodina M., Flajšhans M. First evidence of autotriploidization in sterlet (Acipenser ruthenus) J. Appl. Genet. 2013;54:201–207. doi: 10.1007/s13353-013-0143-3. PubMed DOI
Peakall R., Smouse P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Kaczmarczyk D., Fopp-Bayat D. Assemblage of spawning pairs based on their individual genetic profiles—As tool for maintaining genetic variation within sturgeon populations. Aquac. Res. 2013;44:677–682. doi: 10.1111/j.1365-2109.2011.03064.x. DOI
Bartley D.M., Rana K., Immink A.J. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fish. 2001;10:325–337. doi: 10.1023/A:1016691725361. DOI
Shivaramu S., Vuong D.T., Havelka M., Šachlová H., Lebeda I., Kašpar V., Flajšhans M. Influence of interspecific hybridization on fitness-related traits in Siberian sturgeon and Russian sturgeon. Czech. J. Anim. Sci. 2019;64:78–88. doi: 10.17221/165/2018-CJAS. DOI
Memis D., Ercan E., Çelikkale M.S., Timur M., Zarkua Z. Growth and Survival Rate of Russian Sturgeon (Acipenser gueldenstaedtii) Larvae from Fertilized Eggs to Artificial Feeding. Turkish J. Fish. Aquat. Sci. 2009;9:47–52.
Chebanov M., Galich E. Sturgeon Hatchery Manual. Food and Agriculture Organisation of the United Nations; Ankara, Turkey: 2011. p. 325. FAO Fisheries and Aquaculture Technical Paper 558.
Gjerde B., Reddy P.V., Mahapatra K.D., Saha J.N., Jana R.K., Meher P.K., Sahoo M., Lenka S., Govindassamy P., Rye M. Growth and survival in two complete diallele crosses with five stocks of Rohu carp (Labeo rohita) Aquaculture. 2002;209:103–115. doi: 10.1016/S0044-8486(01)00848-1. DOI
Panase P., Mengumphan K. Growth performance, length-weight relationship and condition factor of backcross and reciprocal hybrid catfish reared in net cages. Int. J. Zool. Res. 2015;11:57–64.
Liu X., Liang H., Li Z., Liang Y., Lu C., Li C., Chang Y., Zou G., Hu G. Performances of the hybrid between CyCa nucleocytplasmic hybrid fish and scattered mirror carp in different culture environments. Sci. Rep. 2017;7:46329. doi: 10.1038/srep46329. PubMed DOI PMC
Falconer D.S., Mackay T.F.C. Introduction to Quantitative Genetics. 4th ed. Pearson Education, Ltd.; Essex, UK: 1996.
Glogowski J., Kolman R., Szczepkowski M., Horvath A., Urbanyi B., Sieczynski P., Rzemieniecki A., Domagala J., Demianowicz W., Kowalski R., et al. Fertilization rate of Siberian sturgeon (Acipenser baeri, Brandt) milt cryopreserved with methanol. Aquaculture. 2002;211:367–373. doi: 10.1016/S0044-8486(02)00003-0. DOI
Wei Q.W., Zou Y., Li P., Li L. Sturgeon aquaculture in China: Progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009) J. Appl. Ichthyol. 2011;27:162–168. doi: 10.1111/j.1439-0426.2011.01669.x. DOI
Zhang X., Wu W., Li L., Ma X., Chen J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet. Sel. Evol. 2013;45:21. doi: 10.1186/1297-9686-45-21. PubMed DOI PMC
Myrvold K.M., Kennedy B.P. Density dependence and its impact on individual growth rates in an age-structured stream salmonid population. Ecosphere. 2015;6:1–16. doi: 10.1890/ES15-00390.1. DOI
Stearns S.C. The Evolution of Life Histories. Oxford University Press; Oxford, UK: 1992.
Losos J.B., Ricklefs R.E. Adaptation and diversification on islands. Nature. 2009;457:830–836. doi: 10.1038/nature07893. PubMed DOI
Leary R.F., Allendorf F.W., Knudsen K.L. Developmental stability and enzyme heterozygosity in rainbow trout. Nature. 1983;301:71–72. doi: 10.1038/301071a0. PubMed DOI
Reddy P.V.G.K. Genetic Resources of Indian Major Carps. Food and Agriculture Organisation of the United Nations; Rome, Italy: 2000. p. 76. FAO Fisheries and Aquaculture Technical Paper 387.
Arnold M.L. Natural Hybridization and Evolution. Oxford University Press; Oxford, UK: 1997. (Oxford Series in ecology and Evolution).