From Ambition to Action: Navigating Obstacles and Opportunities of "Safe and Sustainable by Design"
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40679238
PubMed Central
PMC12312151
DOI
10.1021/acs.est.4c09863
Knihovny.cz E-zdroje
- Klíčová slova
- SSbD, chemical innovation, chemicals management, regrettable substitution, safe and sustainable by design,
- MeSH
- zachování přírodních zdrojů * MeSH
- znečištění životního prostředí prevence a kontrola MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
With the introduction of "Safe and Sustainable by Design" (SSbD), momentum is created in Europe to shift from the reactive (mis)management of chemicals and materials toward a more proactive design and assessment approach to preventing pollution issues. SSbD is expected to steer the innovation process toward a green and sustainable industrial transition, substitute or minimize the production and use of substances of concern, and minimize the impact on health and the environment throughout the chemical/material life cycle. The European Commission has recommended a framework for operationalizing SSbD, but many open questions remain regarding its feasibility and implementation. Our analysis suggests that despite its potential, the EU SSbD framework in its current form cannot deliver on set ambitions. Suitable assessment methods are not available in many cases, and the complexity and data requirements of SSbD may hinder widespread adoption or result in paralysis by analysis. Moving forward, a more realistic, agile framework, accompanied by clear, simplified methods, and robust support for stakeholders, should be developed to ensure that SSbD principles are fully integrated into practice, leading to truly safer and more sustainable chemicals and materials. We further highlight opportunities to address identified gaps, establish such a framework, and enhance its operationalization.
Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich 8092 Zürich Switzerland
Zobrazit více v PubMed
Almroth B. C., Cornell S. E., Diamond M. L., de Wit C. A., Fantke P., Wang Z.. Understanding and Addressing the Planetary Crisis of Chemicals and Plastics. One Earth. 2022;5(10):1070–1074. doi: 10.1016/j.oneear.2022.09.012. DOI
UNEP . Global Chemicals Outlook II. from Legacies to Innovative Solutions: Implementing the 2030 Agenda for Sustainable Development – Synthesis Report, 2019.
IPBES . Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services; Zenodo, 2019. 10.5281/zenodo.3553579. DOI
Gabrielli P., Rosa L., Gazzani M., Meys R., Bardow A., Mazzotti M., Sansavini G.. Net-Zero Emissions Chemical Industry in a World of Limited Resources. One Earth. 2023;6(6):682–704. doi: 10.1016/j.oneear.2023.05.006. DOI
Cousins I. T., Vestergren R., Wang Z., Scheringer M., McLachlan M. S.. The Precautionary Principle and Chemicals Management: The Example of Perfluoroalkyl Acids in Groundwater. Environ. Int. 2016;94:331–340. doi: 10.1016/j.envint.2016.04.044. PubMed DOI
Fenner K., Scheringer M.. The Need for Chemical Simplification As a Logical Consequence of Ever-Increasing Chemical Pollution. Environ. Sci. Technol. 2021;55(21):14470–14472. doi: 10.1021/acs.est.1c04903. PubMed DOI
Persson L., Carney Almroth B. M., Collins C. D., Cornell S., de Wit C. A., Diamond M. L., Fantke P., Hassellöv M., MacLeod M., Ryberg M. W., Søgaard Jørgensen P., Villarrubia-Gómez P., Wang Z., Hauschild M. Z.. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022;56(3):1510–1521. doi: 10.1021/acs.est.1c04158. PubMed DOI PMC
Bowles K. C., Beyer J.. Examining the Utility of Existing Chemical Hazard Paradigms to Predict Future Global-Scale Environmental Impacts from Emerging Chemicals. Environ. Chem. 2022;19(4):254–262. doi: 10.1071/EN22046. DOI
Kümmerer K., Dionysiou D. D., Olsson O., Fatta-Kassinos D.. A Path to Clean Water. Science. 2018;361(6399):222–224. doi: 10.1126/science.aau2405. PubMed DOI
Rudisill C., Jacobs M., Roy M., Brown L., Eaton R., Malloy T., Davies H., Tickner J.. The Use of Alternatives Assessment in Chemicals Management Policies: Needs for Greater Impact. Integr. Environ. Assess. Manage. 2024;20(4):1035–1045. doi: 10.1002/ieam.4826. PubMed DOI
Holmquist H., Roos S., Schellenberger S., Jönsson C., Peters G.. What Difference Can Drop-in Substitution Actually Make? A Life Cycle Assessment of Alternative Water Repellent Chemicals. J. Cleaner Prod. 2021;329:129661. doi: 10.1016/j.jclepro.2021.129661. DOI
Fantke P., Weber R., Scheringer M.. From Incremental to Fundamental Substitution in Chemical Alternatives Assessment. Sustainable Chem. Pharm. 2015;1:1–8. doi: 10.1016/j.scp.2015.08.001. DOI
Blumenthal J., Diamond M. L., Hoffmann M., Wang Z.. Time to Break the “Lock-In” Impediments to Chemicals Management. Environ. Sci. Technol. 2022;56(7):3863–3870. doi: 10.1021/acs.est.1c06615. PubMed DOI PMC
European Commission . COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. Chemicals Strategy for Sustainability - Towards a Toxic-Free Environment. 667 Final; COM: Brussels, 2020.
Hristozov D., Zabeo A., Soeteman-Hernández L. G., Pizzol L., Stoycheva S.. Safe-and-Sustainable-by-Design Chemicals and Advanced Materials: A Paradigm Shift towards Prevention-Based Risk Governance Is Needed. RSC Sustainability. 2023;1(4):838–846. doi: 10.1039/D3SU00045A. DOI
HouseArmed Services . Subtitle E, Sustainable Chemistry, in William M. (Mac) Thornberry National Defense Authorization Act for Fiscal Year 2021, H.R. 6395, 116th Congress, 2021. https://www.congress.gov/bill/116th-congress/house-bill/6395/text.
OECD . A Chemicals Perspective on Designing with Sustainable Plastics: Goals, Considerations and Trade-Offs, 2021. https://www.oecd.org/en/publications/a-chemicals-perspective-on-designing-with-sustainable-plastics_f2ba8ff3-en.html (accessed 07-16-2025).
OECD . Safe(r) and Sustainable Innovation Approach (SSIA): Nano-Enabled and other Emerging Materials; OECD. https://www.oecd.org/en/topics/sub-issues/nanomaterials-and-advanced-materials/safer-and-sustainable-innovation-approach-ssia-nano-enabled-and-other-emerging-materials.html (accessed 11-27-2024).
Caldeira, C. ; Farcal, R. ; Garmendia Aguirre, I. ; Mancini, L. ; Tosches, D. ; Amelio, A. ; Rasmussen, K. ; Rauscher, H. ; Riego Sintes, J. ; Sala, S. . Safe and Sustainable by Design Chemicals and Materials - Framework for the Definition of Criteria and Evaluation Procedure for Chemicals and Materials. EUR 31100 EN; Publications Office of the European Union: Luxembourg, 2022.
European Commission. COMMISSION RECOMMENDATION (EU) 2022/2510 of 8 December 2022 Establishing a European Assessment Framework for ‘Safe and Sustainable by Design’ Chemicals and Materials. Off. J. Eur. Communities. 2022;325:179.
Abbate, E. ; Garmendia Aguirre, I. ; Bracalente, G. ; Mancini, L. ; Tosches, D. ; Rasmussen, K. ; Bennett, M. ; Rauscher, H. ; Sala, S. . Safe and Sustainable by Design Chemicals and Materials - Methodological Guidance. No. KJ-NA-31–942-EN-N (Online), 2024. 10.2760/28450. DOI
Flerlage H., Slootweg J. C.. Modern Chemistry Is Rubbish. Nat. Rev. Chem. 2023;7:593–594. doi: 10.1038/s41570-023-00523-9. PubMed DOI
Cousins I. T., Goldenman G., Herzke D., Lohmann R., Miller M., Ng C. A., Patton S., Scheringer M., Trier X., Vierke L., Wang Z., DeWitt J. C.. The Concept of Essential Use for Determining When Uses of PFASs Can Be Phased Out. Environ. Sci.: Processes Impacts. 2019;21(11):1803–1815. doi: 10.1039/C9EM00163H. PubMed DOI PMC
DG Environment E. C.. Communication from the Commission – Guiding Criteria and Principles for the Essential Use Concept in EU Legislation Dealing with Chemicals. Off. J. Eur. Communities. 2024:2894.
van Dijk J., Figuière R., Dekker S. C., van Wezel A. P., Cousins I. T.. Managing PMT/vPvM Substances in Consumer Products through the Concepts of Essential-Use and Functional Substitution: A Case-Study for Cosmetics. Environ. Sci.: Processes Impacts. 2023;25(6):1067–1081. doi: 10.1039/D3EM00025G. PubMed DOI
Glüge J., London R., Cousins I. T., DeWitt J., Goldenman G., Herzke D., Lohmann R., Miller M., Ng C. A., Patton S., Trier X., Wang Z., Scheringer M.. Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environ. Sci. Technol. 2022;56(10):6232–6242. doi: 10.1021/acs.est.1c03732. PubMed DOI PMC
DeVito S. C.. On the Design of Safer Chemicals: A Path Forward. Green Chem. 2016;18(16):4332–4347. doi: 10.1039/C6GC00526H. DOI
Clark J. H., Farmer T. J., Herrero-Davila L., Sherwood J.. Circular Economy Design Considerations for Research and Process Development in the Chemical Sciences. Green Chem. 2016;18(14):3914–3934. doi: 10.1039/C6GC00501B. DOI
Tickner J. A., Geiser K., Baima S.. Transitioning the Chemical Industry: Elements of a Roadmap Toward Sustainable Chemicals and Materials. Environment. 2022;64(2):22–36. doi: 10.1080/00139157.2022.2021793. DOI
EEA . Late Lessons from Early Warnings: Science, Precaution, Innovation. EEA Report No 1/2013; Publications Office of the European Union: Luxembourg, 2013. https://www.eea.europa.eu/publications/late-lessons-2.
Veleva V. R., Cue B. W.. The Role of Drivers, Barriers, and Opportunities of Green Chemistry Adoption in the Major World Markets. Curr. Opin. Green Sustainable Chem. 2019;19:30–36. doi: 10.1016/j.cogsc.2019.05.001. DOI
Gustavsson M., Molander S., Backhaus T., Kristiansson E.. Risk Assessment of Chemicals and Their Mixtures Are Hindered by Scarcity and Inconsistencies between Different Environmental Exposure Limits. Environ. Res. 2023;225:115372. doi: 10.1016/j.envres.2023.115372. PubMed DOI
Zhang Z., Sangion A., Wang S., Gouin T., Brown T., Arnot J. A., Li L.. Chemical Space Covered by Applicability Domains of Quantitative Structure–Property Relationships and Semiempirical Relationships in Chemical Assessments. Environ. Sci. Technol. 2024;58(7):3386–3398. doi: 10.1021/acs.est.3c05643. PubMed DOI PMC
Samanipour S., Barron L. P., van Herwerden D., Praetorius A., Thomas K. V., O’Brien J. W.. Exploring the Chemical Space of the Exposome: How Far Have We Gone? JACS Au. 2024;4:2412–2425. doi: 10.1021/jacsau.4c00220. PubMed DOI PMC
Apel C., Kümmerer K., Sudheshwar A., Nowack B., Som C., Colin C., Walter L., Breukelaar J., Meeus M., Ildefonso B., Petrovykh D., Elyahmadi C., Huttunen-Saarivirta E., Dierckx A., Devic A. C., Valsami-Jones E., Brennan M., Rocca C., Scheper J., Strömberg E., Soeteman-Hernández L. G.. Safe-and-Sustainable-by-Design: State of the Art Approaches and Lessons Learned from Value Chain Perspectives. Curr. Opin. Green Sustainable Chem. 2024;45:100876. doi: 10.1016/j.cogsc.2023.100876. DOI
Kivikytö-Reponen P., Fortino S., Marttila V., Khakalo A., Kolari K., Puisto A., Nuvoli D., Mariani A.. An AI-Driven Multiscale Methodology to Develop Transparent Wood as Sustainable Functional Material by Using the SSbD Concept. Comput. Struct. Biotechnol. J. 2024;25:205–210. doi: 10.1016/j.csbj.2024.10.022. PubMed DOI PMC
Bruinen de Bruin Y., Franco A., Ahrens A., Morris A., Verhagen H., Kephalopoulos S., Dulio V., Slobodnik J., Sijm D. T. H. M., Vermeire T., Ito T., Takaki K., De Mello J., Bessems J., Zare Jeddi M., Tanarro Gozalo C., Pollard K., McCourt J., Fantke P.. Enhancing the Use of Exposure Science across EU Chemical Policies as Part of the European Exposure Science Strategy 2020–2030. J. Exposure Sci. Environ. Epidemiol. 2021;32:513–525. doi: 10.1038/s41370-021-00388-4. PubMed DOI PMC
van Dijk J., Gustavsson M., Dekker S. C., van Wezel A. P.. Towards ‘One Substance – One Assessment’: An Analysis of EU Chemical Registration and Aquatic Risk Assessment Frameworks. J. Environ. Manage. 2021;280:111692. doi: 10.1016/j.jenvman.2020.111692. PubMed DOI
Syberg K., Hansen S. F.. Environmental Risk Assessment of Chemicals and Nanomaterials-The Best Foundation for Regulatory Decision-Making? Sci. Total Environ. 2016;541:784–794. doi: 10.1016/j.scitotenv.2015.09.112. PubMed DOI
Wang Z., Adu-Kumi S., Diamond M. L., Guardans R., Harner T., Harte A., Kajiwara N., Klánová J., Liu J., Moreira E. G., Muir D. C. G., Suzuki N., Pinas V., Seppälä T., Weber R., Yuan B.. Enhancing Scientific Support for the Stockholm Convention’s Implementation: An Analysis of Policy Needs for Scientific Evidence. Environ. Sci. Technol. 2022;56:2936–2949. doi: 10.1021/acs.est.1c06120. PubMed DOI
Wilkinson J. L., Boxall A. B. A., Kolpin D. W., Leung K. M. Y., Lai R. W. S., Galbán-Malagón C., Adell A. D., Mondon J., Metian M., Marchant R. A., Bouzas-Monroy A., Cuni-Sanchez A., Coors A., Carriquiriborde P., Rojo M., Gordon C., Cara M., Moermond M., Luarte T., Petrosyan V., Perikhanyan Y., Mahon C. S., McGurk C. J., Hofmann T., Kormoker T., Iniguez V., Guzman-Otazo J., Tavares J. L., Figueiredo F. G. D., Razzolini M. T. P., Dougnon V., Gbaguidi G., Traoré O., Blais J. M., Kimpe L. E., Wong M., Wong D., Ntchantcho R., Pizarro J., Ying G.-G., Chen C.-E., Páez M., Martínez-Lara J., Otamonga J.-P., Poté J., Ifo S. A., Wilson P., Echeverría-Sáenz S., Udikovic-Kolic N., Milakovic M., Fatta-Kassinos D., Ioannou-Ttofa L., Belušová V., Vymazal J., Cárdenas-Bustamante M., Kassa B. A., Garric J., Chaumot A., Gibba P., Kunchulia I., Seidensticker S., Lyberatos G., Halldórsson H. P., Melling M., Shashidhar T., Lamba M., Nastiti A., Supriatin A., Pourang N., Abedini A., Abdullah O., Gharbia S. S., Pilla F., Chefetz B., Topaz T., Yao K. M., Aubakirova B., Beisenova R., Olaka L., Mulu J. K., Chatanga P., Ntuli V., Blama N. T., Sherif S., Aris A. Z., Looi L. J., Niang M., Traore S. T., Oldenkamp R., Ogunbanwo O., Ashfaq M., Iqbal M., Abdeen Z., O’Dea A., Morales-Saldaña J. M., Custodio M., de la Cruz H., Navarrete I., Carvalho F., Gogra A. B., Koroma B. M., Cerkvenik-Flajs V., Gombač M., Thwala M., Choi K., Kang H., Ladu J. L. C., Rico A., Amerasinghe P., Sobek A., Horlitz G., Zenker A. K., King A. C., Jiang J.-J., Kariuki R., Tumbo M., Tezel U., Onay T. T., Lejju J. B., Vystavna Y., Vergeles Y., Heinzen H., Pérez-Parada A., Sims D. B., Figy M., Good D., Teta C.. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. U.S.A. 2022;119(8):e2113947119. doi: 10.1073/pnas.2113947119. PubMed DOI PMC
Finckh S., Beckers L.-M., Busch W., Carmona E., Dulio V., Kramer L., Krauss M., Posthuma L., Schulze T., Slootweg J., Von der Ohe P. C., Brack W.. A Risk Based Assessment Approach for Chemical Mixtures from Wastewater Treatment Plant Effluents. Environ. Int. 2022;164:107234. doi: 10.1016/j.envint.2022.107234. PubMed DOI
Posthuma L., Zijp M. C., Zwart D. D., Van de Meent D., Globevnik L., Koprivsek M., Focks A., Gils J. V., Birk S.. Chemical Pollution Imposes Limitations to the Ecological Status of European Surface Waters. Sci. Rep. 2020;10(1):14825. doi: 10.1038/s41598-020-71537-2. PubMed DOI PMC
Wernet G., Papadokonstantakis S., Hellweg S., Hungerbühler K.. Bridging Data Gaps in Environmental Assessments: Modeling Impacts of Fine and Basic Chemical Production. Green Chem. 2009;11(11):1826–1831. doi: 10.1039/b905558d. DOI
Karrer C., Andreassen M., von Goetz N., Sonnet F., Sakhi A. K., Hungerbühler K., Dirven H., Husøy T.. The EuroMix Human Biomonitoring Study: Source-to-Dose Modeling of Cumulative and Aggregate Exposure for the Bisphenols BPA, BPS, and BPF and Comparison with Measured Urinary Levels. Environ. Int. 2020;136:105397. doi: 10.1016/j.envint.2019.105397. PubMed DOI
van de Meent D., de Zwart D., Posthuma L.. Screening-Level Estimates of Environmental Release Rates, Predicted Exposures, and Toxic Pressures of Currently Used Chemicals. Environ. Toxicol. Chem. 2020;39(9):1839–1851. doi: 10.1002/etc.4801. PubMed DOI PMC
Salieri B., Barruetabeña L., Rodríguez-Llopis I., Jacobsen N. R., Manier N., Trouiller B., Chapon V., Hadrup N., Jiménez A. S., Micheletti C., Merino B. S., Brignon J.-M., Bouillard J., Hischier R.. Integrative Approach in a Safe by Design Context Combining Risk, Life Cycle and Socio-Economic Assessment for Safer and Sustainable Nanomaterials. NanoImpact. 2021;23:100335. doi: 10.1016/j.impact.2021.100335. PubMed DOI
ISO . ISO 14040:2006/Amd 1:2020, Environmental Management Life Cycle Assessment Principles and Framework, Amendment 1, 2020. https://www.iso.org/standard/76121.html.
Kralisch D., Ott D., Gericke D.. Rules and Benefits of Life Cycle Assessment in Green Chemical Process and Synthesis Design: A Tutorial Review. Green Chem. 2015;17(1):123–145. doi: 10.1039/C4GC01153H. DOI
Oberschelp C., Hellweg S., Bradford E., Pfister S., Huo J., Wang Z.. Poor Data and Outdated Methods Sabotage the Decarbonization Efforts of the Chemical Industry. ChemRxiv. 2023:8c86t. doi: 10.26434/chemrxiv-2023-8c86t. DOI
Zhang D., Wang Z., Oberschelp C., Bradford E., Hellweg S.. Enhanced Deep-Learning Model for Carbon Footprints of Chemicals. ACS Sustain. Chem. Eng. 2024;12(7):2700–2708. doi: 10.1021/acssuschemeng.3c07038. PubMed DOI PMC
Secretariat of the Convention on Biological Diversity . Nations Adopt Four Goals, 23 Targets for 2030 in Landmark UN Biodiversity Agreement, 2022. https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022.
Sutherland W. J., Atkinson P. W., Butchart S. H. M., Capaja M., Dicks L. V., Fleishman E., Gaston K. J., Hails R. S., Hughes A. C., Anstey B. L., Roux X. L., Lickorish F. A., Maggs L., Noor N., Oldfield T. E. E., Palardy J. E., Peck L. S., Pettorelli N., Pretty J., Spalding M. D., Tonneijck F. H., Truelove G., Watson J. E. M., Wentworth J., Wilson J. D., Thornton A.. A Horizon Scan of Global Biological Conservation Issues for 2022. Trends Ecol. Evol. 2022;37(1):95–104. doi: 10.1016/j.tree.2021.10.014. PubMed DOI
Sigmund G., Ågerstrand M., Antonelli A., Backhaus T., Brodin T., Diamond M. L., Erdelen W. R., Evers D. C., Hofmann T., Hueffer T., Lai A., Torres J. P. M., Mueller L., Perrigo A. L., Rillig M. C., Schaeffer A., Scheringer M., Schirmer K., Tlili A., Soehl A., Triebskorn R., Vlahos P., Vom Berg C., Wang Z., Groh K.. Addressing Chemical Pollution in Biodiversity Research. Global Change Biol. 2023;29:3240–3255. doi: 10.1111/gcb.16689. PubMed DOI
Bernstad Saraiva A.. System Boundary Setting in Life Cycle Assessment of Biorefineries: A Review. Int. J. Environ. Sci. Technol. 2017;14(2):435–452. doi: 10.1007/s13762-016-1138-5. DOI
Rosenboom J.-G., Langer R., Traverso G.. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022;7(2):117–137. doi: 10.1038/s41578-021-00407-8. PubMed DOI PMC
Rockström J., Steffen W., Noone K., Persson Å., Chapin F. S., Lambin E. F., Lenton T. M., Scheffer M., Folke C., Schellnhuber H. J., Nykvist B., de Wit C. A., Hughes T., van der Leeuw S., Rodhe H., Sörlin S., Snyder P. K., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R. W., Fabry V. J., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J. A.. A Safe Operating Space for Humanity. Nature. 2009;461(7263):472–475. doi: 10.1038/461472a. PubMed DOI
Bai X., Hasan S., Andersen L. S., Bjørn A., Kilkiş S. ¸., Ospina D., Liu J., Cornell S. E., Sabag Muñoz O., de Bremond A., Crona B., DeClerck F., Gupta J., Hoff H., Nakicenovic N., Obura D., Whiteman G., Broadgate W., Lade S. J., Rocha J., Rockström J., Stewart-Koster B., van Vuuren D., Zimm C.. Translating Earth System Boundaries for Cities and Businesses. Nat. Sustain. 2024;7(2):108–119. doi: 10.1038/s41893-023-01255-w. DOI
Hauschild M. Z., McKone T. E., Arnbjerg-Nielsen K., Hald T., Nielsen B. F., Mabit S. E., Fantke P.. Risk and Sustainability: Trade-Offs and Synergies for Robust Decision Making. Environ. Sci. Eur. 2022;34(1):11. doi: 10.1186/s12302-021-00587-8. DOI
Green C., Bilyanska A., Bradley M., Dinsdale J., Hutt L., Backhaus T., Boons F., Bott D., Collins C., Cornell S. E., Craig M., Depledge M., Diderich B., Fuller R., Galloway T. S., Hutchison G. R., Ingrey N., Johnson A. C., Kupka R., Matthiessen P., Oliver R., Owen S., Owens S., Pickett J., Robinson S., Sims K., Smith P., Sumpter J. P., Tretsiakova-McNally S., Wang M., Welton T., Willis K. J., Lynch I.. A Horizon Scan to Support Chemical Pollution–Related Policymaking for Sustainable and Climate-Resilient Economies. Environ. Toxicol. Chem. 2023;42(6):1212–1228. doi: 10.1002/etc.5620. PubMed DOI
Zuiderveen E. A. R., Kuipers K. J. J., Caldeira C., Hanssen S. V., van der Hulst M. K., de Jonge M. M. J., Vlysidis A., van Zelm R., Sala S., Huijbregts M. A. J.. The Potential of Emerging Bio-Based Products to Reduce Environmental Impacts. Nat. Commun. 2023;14(1):8521. doi: 10.1038/s41467-023-43797-9. PubMed DOI PMC
Huo J., Wang Z., Lauri P., Medrano-García J. D., Guillén-Gosálbez G., Hellweg S.. Region-Specific Sourcing of Lignocellulose Residues as Renewable Feedstocks for a Net-Zero Chemical Industry. Environ. Sci. Technol. 2024;58(31):13748–13759. doi: 10.1021/acs.est.4c03005. PubMed DOI PMC
Wang Z., Praetorius A.. Integrating a Chemicals Perspective into the Global Plastic Treaty. Environ. Sci. Technol. Lett. 2022;9:1000–1006. doi: 10.1021/acs.estlett.2c00763. PubMed DOI PMC
London R. L., Glüge J., Scheringer M.. Multiple-Criteria Decision Analysis for Assessments of Chemical Alternatives (MCDA-ACA) Environ. Sci. Technol. 2024;58(43):19315–19324. doi: 10.1021/acs.est.4c03980. PubMed DOI PMC
EEA . Growth of the EU chemicals market for substances of different levels of concern (Indicator). https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/growth-of-the-eu-chemicals-market-for-substances-of-different-levels-of-concern (accessed 08 19, 2024).
Zou H., Wang T., Wang Z.-L., Wang Z.. Continuing Large-Scale Global Trade and Illegal Trade of Highly Hazardous Chemicals. Nat. Sustain. 2023;6:1394–1405. doi: 10.1038/s41893-023-01158-w. DOI
Caldeira, C. ; Garmendia Aguirre, I. ; Tosches, D. ; Mancini, L. ; Abbate, E. ; Farcal, R. ; Lipsa, D. ; Rasmussen, K. ; Rauscher, H. ; Riego Sintes, J. ; Sala, S. . Safe and Sustainable by Design Chemicals and Materials - Application of the SSbD Framework to Case Studies. No. KJ-NA-31–528-EN-N (online),KJ-NA-31–528-EN-C (Print), 2023. 10.2760/769211. DOI
Gradin K. T., Björklund A.. The Common Understanding of Simplification Approaches in Published LCA Studiesa Review and Mapping. Int. J. Life Cycle Assess. 2021;26(1):50–63. doi: 10.1007/s11367-020-01843-4. DOI
Porter, M. ; Van der Linde, C. . Green and Competitive: Ending the Stalemate. In Dyn. Eco-Effic. Econ. Environ. Regul. Compet. Advant.; Edward Elgar Publishing, 1995; Vol. 33, pp 120–134.
Marx-Stoelting P., Rivière G., Luijten M., Aiello-Holden K., Bandow N., Baken K., Cañas A., Castano A., Denys S., Fillol C., Herzler M., Iavicoli I., Karakitsios S., Klanova J., Kolossa-Gehring M., Koutsodimou A., Vicente J. L., Lynch I., Namorado S., Norager S., Pittman A., Rotter S., Sarigiannis D., Silva M. J., Theunis J., Tralau T., Uhl M., van Klaveren J., Wendt-Rasch L., Westerholm E., Rousselle C., Sanders P.. A Walk in the PARC: Developing and Implementing 21st Century Chemical Risk Assessment in Europe. Arch. Toxicol. 2023;97(3):893–908. doi: 10.1007/s00204-022-03435-7. PubMed DOI PMC
Pizzol L., Livieri A., Salieri B., Farcal L., Soeteman-Hernández L. G., Rauscher H., Zabeo A., Blosi M., Costa A. L., Peijnenburg W., Stoycheva S., Hunt N., López-Tendero M. J., Salgado C., Reinosa J. J., Fernández J. F., Hristozov D.. Screening Level Approach to Support Companies in Making Safe and Sustainable by Design Decisions at the Early Stages of Innovation. Clean. Environ. Syst. 2023;10:100132. doi: 10.1016/j.cesys.2023.100132. DOI