Information Requirements under the Essential-Use Concept: PFAS Case Studies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
P42 ES027706
NIEHS NIH HHS - United States
PubMed
34608797
PubMed Central
PMC8980108
DOI
10.1021/acs.est.1c03732
Knihovny.cz E-zdroje
- Klíčová slova
- PFAS, carpet, chrome plating, essential use, fluoropolymer,
- MeSH
- fluorokarbony * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fluorokarbony * MeSH
Per- and polyfluoroalkyl substances (PFAS) are a class of substances for which there are widespread concerns about their extreme persistence in combination with toxic effects. It has been argued that PFAS should only be employed in those uses that are necessary for health or safety or are critical for the functioning of society and where no alternatives are available ("essential-use concept"). Implementing the essential-use concept requires a sufficient understanding of the current uses of PFAS and of the availability, suitability, and hazardous properties of alternatives. To illustrate the information requirements under the essential-use concept, we investigate seven different PFAS uses, three in consumer products and four industrial applications. We investigate how much information is available on the types and functions of PFAS in these uses, how much information is available on alternatives, their performance and hazardous properties and, finally, whether this information is sufficient as a basis for deciding on the essentiality of a PFAS use. The results show (i) the uses of PFAS are highly diverse and information on alternatives is often limited or lacking; (ii) PFAS in consumer products often are relatively easy to replace; (iii) PFAS uses in industrial processes can be highly complex and a thorough evaluation of the technical function of each PFAS and of the suitability of alternatives is needed; (iv) more coordination among PFAS manufacturers, manufacturers of alternatives to PFAS, users of these materials, government authorities, and other stakeholders is needed to make the process of phasing out PFAS more transparent and coherent.
Department of Environmental Science Stockholm University SE 10691 Stockholm Sweden
European Environment Agency Kongens Nytorv 6 DK 1050 Copenhagen Denmark
Health and Environment Program Commonweal Bolinas California 94924 United States
Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich 8092 Zürich Switzerland
Zobrazit více v PubMed
Buck RC; Franklin J; Berger U; Conder JM; Cousins IT; De Voogt P; Jensen AA; Kannan K; Mabury SA; van Leeuwen SPJJ Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag 2011, 7 (4), 513–541. 10.1002/ieam.258. PubMed DOI PMC
OECD. Toward a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs) - Series on Risk Management Nr. 39; 2018.
Fenton SE; Ducatman A; Boobis A; DeWitt JC; Lau C; Ng C; Smith JS; Roberts SM Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem 2021, 40 (3), 606–630. 10.1002/etc.4890. PubMed DOI PMC
Cousins IT; Goldenman G; Herzke D; Lohmann R; Miller M; Ng CA; Patton S; Scheringer M; Trier X; Vierke L; Wang Z; DeWitt JC The Concept of Essential Use for Determining When Uses of PFASs Can Be Phased Out. Environ. Sci. Process. Impacts 2019, 1–13. 10.1039/C9EM00163H. PubMed DOI PMC
Cousins IT; Ng C; Wang Z; Scheringer M Why Is High Persistence Alone a Major Cause of Concern? Environ. Sci. Process. Impacts 2019, 0–2. 10.1039/C8EM00515J. PubMed DOI
Cousins IT; DeWitt JC; Glüge J; Goldenman G; Herzke D; Lohmann R; Ng CA; Scheringer M; Wang Z The High Persistence of PFAS Is Sufficient for Their Management as a Chemical Class. Environ. Sci. Process. Impacts 2020. 10.1039/D0EM00355G. PubMed DOI PMC
Sweden_and_other_EU_countries. Elements for an EU-Strategy for PFASs; 2019.
EC. Commission Staff Working Document - Poly- and Perfluoroalkyl Substances (PFAS) Accompanying the Document "Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Region; 2020.
Fernández SR; Kwiatkowski C; Bruton T Building A Better World - Eliminating Unnecessary PFAS in Building Materials; 2021.
Holmquist H; Schellenberger S; van der Veen I; Peters GM; Leonards PEG; Cousins IT Properties, Performance and Associated Hazards of State-of-the-Art Durable Water Repellent (DWR) Chemistry for Textile Finishing. Environ. Int 2016, 91, 251–264. 10.1016/j.envint.2016.02.035. PubMed DOI
DEPA. Alternatives to Perfluoroalkyl and Polyfluoro- Alkyl Substances (PFAS) in Textiles; 2015.
Trier X; Taxvig C; Rosenmai AK; Pedersen GA PFAS in Paper and Board for Food Contact - Options for Risk Management of Poly- and Perfluorinated Substances; Copenhagen, Denmark, 2017.
IPEN. Fluorine-Free Firefighting Foams (3F) Viable Alternatives to Fluorinated Aqueous Film-Forming Foams (AFFF); 2018.
KEMI Swedish Chemical Agency. Occurrence and Use of Highly Fluorinated Substances and Alternatives; 2015.
Poulsen PB; Jensen AA; Wallström E More Environmentally Friendly Alternatives to PFOS-Compounds and PFOA; 2005.
Glüge J; Scheringer M; Cousins IT; DeWitt JC; Goldenman G; Herzke D; Lohmann R; Ng CA; Trier X; Wang Z An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process. Impacts 2020, 1462–1468. 10.1039/D0EM00291G. PubMed DOI PMC
Pan Y; Zhang H; Cui Q; Sheng N; Yeung LWY; Guo Y; Sun Y; Dai J First Report on the Occurrence and Bioaccumulation of Hexafluoropropylene Oxide Trimer Acid: An Emerging Concern. Environ. Sci. Technol 2017, 51 (17), 9553–9560. 10.1021/acs.est.7b02259. PubMed DOI
Gebbink WA; Van Asseldonk L; Van Leeuwen SPJ Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands. Environ. Sci. Technol 2017, 51 (19), 11057–11065. 10.1021/acs.est.7b02488. PubMed DOI PMC
Lindstrom AB; Galloway JE; Strynar MJ; Knappe D; Sun M; Newton S; Weavers LK Emerging Per- and Polyfluoroalkyl Substances (PFAS). Highly Fluorinated Compounds Social and Scientific Discovery Northeastern University Social Science Environmental Health Research Institute, Boston. 2017.
Galloway JE; Moreno AVP; Lindstrom AB; Strynar MJ; Newton S; May AA; May AA; Weavers LK; Weavers LK Evidence of Air Dispersion: HFPO-DA and PFOA in Ohio and West Virginia Surface Water and Soil near a Fluoropolymer Production Facility. Environ. Sci. Technol 2020, 54 (12), 7175–7184. 10.1021/acs.est.9b07384. PubMed DOI PMC
Lin AYC; Panchangam SC; Lo CC The Impact of Semiconductor, Electronics and Optoelectronic Industries on Downstream Perfluorinated Chemical Contamination in Taiwanese Rivers. Environ. Pollut 2009, 157 (4), 1365–1372. 10.1016/j.envpol.2008.11.033. PubMed DOI
Tang CY; Fu QS; Robertson AP; Criddle CS; Leckie JO Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environ. Sci. Technol 2006, 40 (23), 7343–7349. 10.1021/es060831q. PubMed DOI
US EPA. Estimation Programs Interface Suite™ for Microsoft®Windows. US Environmental Protection Agency: Washington DC, USA: 2012.
BikeRadar. Chain lube buyer’s guide: what’s the best chain lube for your bike? https://www.bikeradar.com/advice/buyers-guides/chain-lubes/ (accessed Oct 28, 2020).
Maples PD Dry Lubricant. US5898022, 1999.
Dy-Mark. Safety Data Sheet for Dy-Mark Protech Wet PTFE Lubricant; 2016.
Smith J Personal Communication with Jon Smith from Fenwicks Bike, 2021.
Transa. Green Oil https://www.transa.ch/marken/green-oil/.
GreenOil. Britain’s first bike biolube https://www.green-oil.net/products.html.
WPL. Lubricate https://us.wplbike.com/collections/lubricate (accessed Oct 28, 2020).
WPL. Bio-Based vs Biodegradable Bicycle Maintenance Products https://us.wplbike.com/blogs/news/bio-based-vs-biodegradable-bicycle-maintenance-products.
HBN. Eliminating Toxics in Carpet: Lessons for the Future of Recycling; 2017.
Interface. Stain Resistance https://www.interface.com/US/en-US/sustainability/product-transparency/Stain-Resistance-PFAS-en_US.
Econyl. Econyl Stay Clean http://www.econyl.com/stay-clean/.
Nordic Council. Hazardous Substances in Plastics - Ways to Increase Recycling; 2017.
Onyshko J; Hewlett R Toxics in Carpets in the European Union; 2018.
Blue-Angels. Basic Award Criteria for Floor Coverings https://www.blauer-engel.de/en/products/construction-heating/floor-coverings-textile/floor-coverings.
Cradle-to-cradle. Introducing the Cradle to Cradle Certified Product Standard Version 4.0 https://www.c2ccertified.org/get-certified/cradle-to-cradle-certified-version-4.
GUT. Prüfkriterien 2020. http://docplayer.org/214201900-Gut-pruefkriterien-2020.html.
OEKO-TEX. Annex 4: Limit Values Table; 2021.
Blauer-Engel. Condor Group PA6-111-FS https://www.blauer-engel.de/en/products/construction-heating/bodenbelaege-textil/condor-group-pa6-111-fs (accessed Jun 12, 2019).
POPRC. Consolidated Guidance on Alternatives to Perfluorooctane Sulfonic Acid and Its Related Chemicals (UNEP/POPS/POPRC.12/INF/15/Rev.1); 2016.
Blom C; Hanssen L Analysis of Per- and Polyfluorinated Substances in Articles (M-360); 2015.
Ecover. ZERO Dish Soap https://us.ecover.com/products/zero-dish-soap/.
Ecover. Laundry Detergent https://us.ecover.com/products/laundry-detergent-lavender-field/.
Ecover. Rinse Aid https://us.ecover.com/products/rinse-aid/.
POPRC. Report on the Assessment of Alternatives to Perfluorooctane Sulfonic Acid, Its Salts and Perfluorooctane Sulfonyl Fluoride (UNEP/POPS/POPRC.14/INF/13); 2019.
Wiethoelter D Personal Communication with Dirk Wiethoelter from MacDermid, 2021.
Poulsen PB; Gram LK; Jensen AA; Rasmussen AA; Ravn C; Moller P; Jorgensen CR; Lokkegaard K Substitution of PFOS for Use in Nondecorative Hard Chrome Plating; 2011.
Blepp M; Willand W; Weber R Verwendung von PFOS in Der Galvanik - Kennzeichen Eines Geschlossenen Kreislaufs, Verwendung von Ersatzstoffen (63/2016); 2016.
Hauser H; Füglister L; Scheffelmaier T Verwendung von Fluortensiden in Der Galvanikbranche; 2020.
Gerhardi Kunststofftechnik. Analysis of Alternatives for Chromium Trioxide - Non Confidential Report; 2016.
USEPA. Chromium Compounds - Factsheet; 2000.
Grohe. Comments and Response to Comments on Authorisation of Chromium Trioxide; 2016.
Gerhardi Kunststofftechnik. Comments and Response to Comments on Authorisation of Chromium Trioxide; 2016.
Atotech. Atotech launches the first trivalent chromium hard chrome https://www.atotech.com/atotech-launches-the-first-trivalent-chromium-hard-chrome-general-metal-finishing/ (accessed May 15, 2019).
ECHA. Opinion on an Application for Authorisation for Chromium Trioxide Use: Functional Chrome Plating; Committee for Risk Assessment (RAC) and Committee for Socio-economic Analysis (SEAC), 2016.
Hall TD; Snyder ST; Taylor EJ; Inman ME; Xu J; Radhakrishnan R Development of a Functional REACH Compliant Trivalent Chromium Electroplating Process, 2017. 10.13140/RG.2.2.25555.07205. DOI
Blesic M; DIchiarante V; Milani R; Linder M; Metrangolo P Evaluating the Potential of Natural Surfactants in the Petroleum Industry: The Case of Hydrophobins. Pure Appl. Chem 2018, 90 (2), 305–314. 10.1515/pac-2017-0703. DOI
Kissa E Fluorinated Surfactants and Repellents; Marcel Dekker AG, 2001.
Murphy PM; Hewat T Fluorosurfactants in Enhanced Oil Recovery. Open Pet. Eng. J 2008, 1 (1), 58–61. 10.2174/1874834100801010058. DOI
Kiani S; Rogers SE; Sagisaka M; Alexander S; Barron AR A New Class of Low Surface Energy Anionic Surfactant for Enhanced Oil Recovery. Energy and Fuels 2019, 33, 3162–3175. 10.1021/acs.energyfuels.9b00391. DOI
Bond DC Increasing the Recovery of Petroleum from Wells. US2765851, 1956.
Scherubel GA Subterranean-Formation Acidizing with Foam. GB2018863, 1979.
Alexander S; Smith GN; James C; Rogers SE; Guittard F; Sagisaka M; Eastoe J Low-Surface Energy Surfactants with Branched Hydrocarbon Architectures. Langmuir 2014, 30 (12), 3413–3421. 10.1021/la500332s. PubMed DOI
Wösten HAB; Scholtmeijer K Applications of Hydrophobins: Current State and Perspectives. Appl. Microbiol. Biotechnol 2015, 99 (4), 1587–1597. 10.1007/s00253-014-6319-x. PubMed DOI
Bode A; Huff Juergen Guzmann Marcus Wuensch JR; Subkowski Thomas; Stein S; Karos Marvi; Scholtissek Martin; Bechtloff B; Baus U; Bollschweiler C Extraction and Recovery of Petroleum from Oil Sand Using Hydrophobins and Derivatives. CA2642375, 2009.
Guzmann M; Liu Y; Baus U Hydrophobins and Hydrophobin Fusion Proteins as Emulsifiers and Additives in Drilling Fluids. WO2006103253, 2006.
Varjani SJ Biosurfactants in Microbial Enhanced Oil Recovery (Chapter 23). In Modern Tools and Techniques to Understand Microbes; Varma A, Sharma AK, Eds.; Springer, 2017; pp 369–380. 10.1007/978-3-319-49197-4. DOI
OTBL. MEOR (Microbial Enhanced Oil Recovery) Technology http://www.otbl.co.in/MEOR.php (accessed Apr 23, 2020).
Singh A; Van Hamme JD; Ward OP Surfactants in Microbiology and Biotechnology: Part 2. Application Aspects. Biotechnol. Adv 2007, 25 (1), 99–121. 10.1016/j.biotechadv.2006.10.004. PubMed DOI
Banat IM Biosurfactants Production and Possible Uses in Microbial Enhanced Oil Recovery and Oil Pollution Remediation: A Review. Bioresour. Technol 1995, 51 (1), 1–12. 10.1016/0960-8524(94)00101-6. DOI
Lazar I; Petrisor IG; Yen TF Microbial Enhanced Oil Recovery (MEOR). Pet. Sci. Technol 2007, 25 (11), 1353–1366. 10.1080/10916460701287714. DOI
US EPA. Biopesticides Registration Action Document Rhamnolipid Biosurfactant (PC Code 110029); 2004.
ECHA. Sophorolipids: fermentation products of glucose and fatty acids, C18 (unsaturated), glycerol esters with yeast Candida Bombicola, partially hydrolysed https://echa.europa.eu/de/registration-dossier/-/registered-dossier/12734/1/1.
Hwang YH; Park BK; Lim JH; Kim MS; Song IB; Park SC; Yun HI Evaluation of Genetic and Developmental Toxicity of Surfactin C from Bacillus Subtilis BC1212. J. Heal. Sci 2008, 54 (1), 101–106. 10.1248/jhs.54.101. DOI
Rodríguez-López L; Rincón-Fontán M; Vecino X; Moldes AB; Cruz JM Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. J. Surfactants Deterg 2020, 23 (1), 79–90. 10.1002/jsde.12338. DOI
Introduction to Fluoropolymers (Chapter 6). In Introduction to Fluoropolymers; Ebnesajjad S, Ed.; Elsevier Inc., 2013. 10.1016/B978-1-4557-7442-5.00006-1. DOI
Hintzer K; Jurgens M; Kaspar H; Lochhaas H; Maurer AR; Zipplies T Aqueous Emulsion Polymerization of Fluorinated Monomers Using a Perfluoropolyether Surfactant. US20070015865, 2007.
Manufacturing Polytetrafluoroethylene (Chapter 7). In Introduction to Fluoropolymers; Ebnesajjad S, Ed.; Elsevier Inc., 2013. 10.1016/B978-1-4557-7442-5.00007-3. DOI
Kynar500FSF . Fluorosurfactant Free Kynar® PVDF Resin. https://www.kynar500.com/en/product-information/fluorosurfactant-free/.
Solvay. Solvay Launches Non-Fluorosurfactant Technologies in the U.S. https://www.solvay.com/en/press-release/solvay-launches-non-fluorosurfactant-technologies-in-us.
Amin-Sanayei R; Olmstead C Aqueous Process for Making Fluoropolymers. US20060281845, 2006.
Amin-Sanayei R; Durali M; Kappler P; Burch G Aqueous Process for Making Fluoropolymers. US20070135546, 2007.
Amin-Sanayei R; Olmstead C Aqueous Process for Making a Stable Fluoropolymer Dispersion. US20070082993, 2007.
Amin-Sanayei R; Durali M; Kappler P; Burch G Aqueous Process for Making Polyvinylidene Fluoride Dispersion. US20120142858, 2012.
Goldbach JT; Bonnet A; Kahn AP Making a Fluoropolymer Dispersion. WO2020101963, 2020.
Durali M; Hedhli L; Wille R Polymerization of Fluoropolymers Using Alkyl Phosphonate Surfactants. US20070032591, 2007.
Durali M; Hedhli L Method of Producing Fluoropolymers Using Acid-Functionalized Monomers. WO2012030784, 2012.
Durali M; Hedhli L; Amin-Sanayei R Polymerization of Fluoropolymers Using Non-Fluorinated Surfactants. WO2007018783, 2007.
Wille RA; Durali M; Hedhli L; Amin-Sanayei Ramin Schmidhauser, J. Thermoplastic Fluoropolymers and Their Production Using Alkyl Sulfonate Surfactants. US20050239983, 2005.
Wille RA; Durali M; Hedhli L; Antoun SY Polymerization of Halogen-Containing Monomers Using Siloxane Surfactant and Aqueous Composition. EP1462461, 2004.
Wille RA; Hedhli L; Durali M; Antoun SY Polymerization of Fluoromonomers Using a 3-Allyloxy-2-Hydroxy-1-Propane Sulfonic Acid Salt as Surfactant. EP1475395, 2004.
Lyons DF Production of Fluoroelastomers by Radical Emulsion Polymerization in the Presence of Anionic Phosphate Ester Surfactants. US20080262177, 2008.
Tang PL A Semi-Batch Emulsion Polymerization Process for Making Fluoroelastomers Using a Hydrocarbon Anionic Surfactant Introduced Shortly after Polymerization Has Started. US20080125558, 2008.
Bissinger P; Dadalas MC; Hintzer K; Mayer Ludwig Schwertfeger Werner Zipplies TC Preparation and Stabilization of Fluoropolymer Dispersions by Aqueous Emulsion Polymerization with Carbosilane Surfactants. US7678859, 2010.
Zipplies TC; Hintzer K; Dadalas MC; Frey O; Lochhaas KH Fluoropolymer Compositions Containing a Polyol Compound as Emulsifier and Methods of Making Them. WO2011014715, 2011.
Brothers PD; Gangal SV; Khasnis DD Employing Polyalkylene Oxides for Nucleation in Aqueous Polymerization of Fluoromonomer. US20150148481, 2015.
Kawai F Biodegradation of Polyethers (Polyethylene Glycol, Polypropylene Glycol, Polytetramethylene Glycol, and Others). In Biopolymers Online; Matsumura S, Steinbüchel A, Eds.; Wiley, 2005. 10.1002/3527600035.bpol9012. DOI
Brooke D; Footitt A; Nwaogu TA Environmental Risk Evaluation Report: Perfluorooctanesulphonate (PFOS); 2004.
Glodde M; Liu S; Varanasi PR Fluorine-Free Photoacid Generators for 193 Nm Lithography Based on Non-Sulfonate Organic Superacids. Journal of Photopolymer Science and Technology. 2010, pp 173–184. 10.2494/photopolymer.23.173. DOI
Liu S; Glodde M; Varanasi PR Design, Synthesis, and Characterization of Fluorine-Free PAGs for 193-Nm Lithography. Adv. Resist Mater. Process. Technol. XXVII 2010, 7639 (March 2010), 76390D. 10.1117/12.846600. DOI
IBM. A Commitment to Environmental Leadership; 2010.
Chang C-Y Lithography Material and Lithography Process. US20080299487, 2008.
Klipp A; Oetter G; Montero Pancera Sabrina Honciuc A; Bittner C Method for Manufacturing Integrated Circuit Devices, Optical Devices, Micromachines and Mechanical Precision Devices Having Patterned Material Layers with Line-Space Dimensions of 50 Nm and Less. WO2012127342, 2012.
WikiChip. 7 nm lithography process https://en.wikichip.org/wiki/7_nm_lithography_process (accessed Jul 17, 2020).
Hatakeyama J; Ohashi M Resist Composition and Patterning Process. US20200073237, 2020.
Glodde M; Liu S; Popova I Ionic, Organic Photoacid Generators for DUV, MUV and Optical Lithography Based on Peraceptor-Substituted Aromatic Anions. WO2009087027, 2009.
DTSC. Carpets and rugs with perfluoroalkyl or polyfluoroalkyl substances (PFASs) as priority products https://dtsc.ca.gov/scp/carpets-and-rugs-with-perfluoroalkyl-and-polyfluoroalkyl-substances-pfass/.
USEPA. Faraday Inc. Develops New Durable Trivalent Plating Process https://19january2017snapshot.epa.gov/sbir/faraday-inc-develops-new-durable-trivalent-plating-process_.html (accessed Oct 28, 2020).
ECHA. Adopted opinions and previous consultations on applications for authorisation https://echa.europa.eu/applications-for-authorisation-previous-consultations.
From Ambition to Action: Navigating Obstacles and Opportunities of "Safe and Sustainable by Design"
From "forever chemicals" to fluorine-free alternatives