Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults: A Randomized Clinical Trial
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, Research Support, N.I.H., Extramural
Grantová podpora
P30 DK034989
NIDDK NIH HHS - United States
P30 DK045735
NIDDK NIH HHS - United States
R01 DK113984
NIDDK NIH HHS - United States
UL1 TR001863
NCATS NIH HHS - United States
PubMed
33252690
PubMed Central
PMC7705596
DOI
10.1001/jamanetworkopen.2020.25454
PII: 2773291
Knihovny.cz E-zdroje
- MeSH
- absorpční fotometrie MeSH
- C-peptid metabolismus MeSH
- cholesterol metabolismus MeSH
- dieta s omezením tuků * MeSH
- dieta veganská * MeSH
- dospělí MeSH
- energetický metabolismus MeSH
- energetický příjem MeSH
- glykovaný hemoglobin metabolismus MeSH
- HDL-cholesterol metabolismus MeSH
- hepatocyty metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence MeSH
- játra diagnostické zobrazování metabolismus MeSH
- kosterní svalová vlákna metabolismus MeSH
- kosterní svaly diagnostické zobrazování metabolismus MeSH
- krevní glukóza metabolismus MeSH
- LDL-cholesterol metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- nadváha dietoterapie metabolismus MeSH
- nitrobřišní tuk diagnostické zobrazování MeSH
- obezita dietoterapie metabolismus MeSH
- postprandiální období MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- senioři MeSH
- složení těla MeSH
- tělesná hmotnost MeSH
- triglyceridy metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- C-peptid MeSH
- cholesterol MeSH
- glykovaný hemoglobin MeSH
- HDL-cholesterol MeSH
- hemoglobin A1c protein, human MeSH Prohlížeč
- inzulin MeSH
- krevní glukóza MeSH
- LDL-cholesterol MeSH
- triglyceridy MeSH
IMPORTANCE: Excess body weight and insulin resistance lead to type 2 diabetes and other major health problems. There is an urgent need for dietary interventions to address these conditions. OBJECTIVE: To measure the effects of a low-fat vegan diet on body weight, insulin resistance, postprandial metabolism, and intramyocellular and hepatocellular lipid levels in overweight adults. DESIGN, SETTING, AND PARTICIPANTS: This 16-week randomized clinical trial was conducted between January 2017 and February 2019 in Washington, DC. Of 3115 people who responded to flyers in medical offices and newspaper and radio advertisements, 244 met the participation criteria (age 25 to 75 years; body mass index of 28 to 40) after having been screened by telephone. INTERVENTIONS: Participants were randomized in a 1:1 ratio. The intervention group (n = 122) was asked to follow a low-fat vegan diet and the control group (n = 122) to make no diet changes for 16 weeks. MAIN OUTCOMES AND MEASURES: At weeks 0 and 16, body weight was assessed using a calibrated scale. Body composition and visceral fat were measured by dual x-ray absorptiometry. Insulin resistance was assessed with the homeostasis model assessment index and the predicted insulin sensitivity index (PREDIM). Thermic effect of food was measured by indirect calorimetry over 3 hours after a standard liquid breakfast (720 kcal). In a subset of participants (n = 44), hepatocellular and intramyocellular lipids were quantified by proton magnetic resonance spectroscopy. Repeated measure analysis of variance was used for statistical analysis. RESULTS: Among the 244 participants in the study, 211 (87%) were female, 117 (48%) were White, and the mean (SD) age was 54.4 (11.6) years. Over the 16 weeks, body weight decreased in the intervention group by 5.9 kg (95% CI, 5.0-6.7 kg; P < .001). Thermic effect of food increased in the intervention group by 14.1% (95% CI, 6.5-20.4; P < .001). The homeostasis model assessment index decreased (-1.3; 95% CI, -2.2 to -0.3; P < .001) and PREDIM increased (0.9; 95% CI, 0.5-1.2; P < .001) in the intervention group. Hepatocellular lipid levels decreased in the intervention group by 34.4%, from a mean (SD) of 3.2% (2.9%) to 2.4% (2.2%) (P = .002), and intramyocellular lipid levels decreased by 10.4%, from a mean (SD) of 1.6 (1.1) to 1.5 (1.0) (P = .03). None of these variables changed significantly in the control group over the 16 weeks. The change in PREDIM correlated negatively with the change in body weight (r = -0.43; P < .001). Changes in hepatocellular and intramyocellular lipid levels correlated with changes in insulin resistance (both r = 0.51; P = .01). CONCLUSIONS AND RELEVANCE: A low-fat plant-based dietary intervention reduces body weight by reducing energy intake and increasing postprandial metabolism. The changes are associated with reductions in hepatocellular and intramyocellular fat and increased insulin sensitivity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02939638.
Department of Cellular and Molecular Physiology Yale School of Medicine New Haven Connecticut
Department of Internal Medicine Yale School of Medicine New Haven Connecticut
George Washington University School of Medicine and Health Sciences Washington DC
Institute of Endocrinology Prague Czech Republic
Metabolic Unit CNR Institute of Neuroscience Padua Italy
Zobrazit více v PubMed
Qian F, Liu G, Hu FB, Bhupathiraju SN, Sun Q. Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med. 2019. doi:10.1001/jamainternmed.2019.2195 PubMed DOI PMC
Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32(5):791-796. doi:10.2337/dc08-1886 PubMed DOI PMC
Barnard ND, Levin SM, Yokoyama Y. A systematic review and meta-analysis of changes in body weight in clinical trials of vegetarian diets. J Acad Nutr Diet. 2015;115(6):954-969. doi:10.1016/j.jand.2014.11.016 PubMed DOI
Barnard ND, Scialli AR, Turner-McGrievy G, Lanou AJ, Glass J. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am J Med. 2005;118(9):991-997. doi:10.1016/j.amjmed.2005.03.039 PubMed DOI
National Cholesterol Education Program Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). JAMA. 1993;269(23):3015-3023. doi:10.1001/jama.1993.03500230097036 PubMed DOI
Goff LM, Bell JD, So P-W, Dornhorst A, Frost GS. Veganism and its relationship with insulin resistance and intramyocellular lipid. Eur J Clin Nutr. 2005;59(2):291-298. doi:10.1038/sj.ejcn.1602076 PubMed DOI
Gojda J, Patková J, Jaček M, et al. . Higher insulin sensitivity in vegans is not associated with higher mitochondrial density. Eur J Clin Nutr. 2013;67(12):1310-1315. doi:10.1038/ejcn.2013.202 PubMed DOI
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005-2011. doi:10.2337/diabetes.51.7.2005 PubMed DOI
Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 2000;71(4):885-892. doi:10.1093/ajcn/71.4.885 PubMed DOI
Yatsuya H, Nihashi T, Li Y, et al. . Independent association of liver fat accumulation with insulin resistance. Obes Res Clin Pract. 2014;8(4):e350-e355. doi:10.1016/j.orcp.2013.08.002 PubMed DOI
Schulz KF, Altman DG, Moher D; CONSORT Group . CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8(1):18. doi:10.1186/1741-7015-8-18 PubMed DOI PMC
Schakel SF, Sievert YA, Buzzard IM. Sources of data for developing and maintaining a nutrient database. J Am Diet Assoc. 1988;88(10):1268-1271. PubMed
Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755-762. doi:10.1079/PHN2005898 PubMed DOI
Kaul S, Rothney MP, Peters DM, et al. . Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring). 2012;20(6):1313-1318. doi:10.1038/oby.2011.393 PubMed DOI PMC
Neeland IJ, Grundy SM, Li X, Adams-Huet B, Vega GL. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study. Nutr Diabetes. 2016;6(7):e221. doi:10.1038/nutd.2016.28 PubMed DOI PMC
Mellis MG, Oldroyd B, Hind K. In vivo precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: the influence of body mass index. Eur J Clin Nutr. 2014;68(12):1365-1367. doi:10.1038/ejcn.2014.213 PubMed DOI
Carver TE, Christou NV, Andersen RE. In vivo precision of the GE iDXA for the assessment of total body composition and fat distribution in severely obese patients. Obesity (Silver Spring). 2013;21(7):1367-1369. doi:10.1002/oby.20323 PubMed DOI
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419. doi:10.1007/BF00280883 PubMed DOI
Tura A, Chemello G, Szendroedi J, et al. . Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index. Diabetologia. 2018;61(5):1135-1141. doi:10.1007/s00125-018-4568-4 PubMed DOI
Kaviani S, Schoeller DA, Ravussin E, et al. . Determining the accuracy and reliability of indirect calorimeters utilizing the methanol combustion technique. Nutr Clin Pract. 2018;33(2):206-216. doi:10.1002/ncp.10070 PubMed DOI PMC
Blond E, Maitrepierre C, Normand S, et al. A new indirect calorimeter is accurate and reliable for measuring basal energy expenditure, thermic effect of food and substrate oxidation in obese and healthy subjects. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism 2011;6(1):e7–e15. doi:10.1016/j.eclnm.2010.12.001 DOI
Petersen KF, Dufour S, Feng J, et al. . Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A. 2006;103(48):18273-18277. doi:10.1073/pnas.0608537103 PubMed DOI PMC
Lee SS, Lee Y, Kim N, et al. . Hepatic fat quantification using chemical shift MR imaging and MR spectroscopy in the presence of hepatic iron deposition: validation in phantoms and in patients with chronic liver disease. J Magn Reson Imaging. 2011;33(6):1390-1398. doi:10.1002/jmri.22583 PubMed DOI
Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705-13709. doi:10.1073/pnas.1110105108 PubMed DOI PMC
Gruetter R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med. 1993;29(6):804-811. doi:10.1002/mrm.1910290613 PubMed DOI
Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109(21):8236-8240. doi:10.1073/pnas.1205675109 PubMed DOI PMC
Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007;6(2):469-479. doi:10.1021/pr060594q PubMed DOI
Sosvorova L, Hill M, Mohapl M, Vitku J, Hampl R. Steroid hormones in prediction of normal pressure hydrocephalus. J Steroid Biochem Mol Biol. 2015;152:124-132. doi:10.1016/j.jsbmb.2015.05.004 PubMed DOI
Romeo S, Kozlitina J, Xing C, et al. . Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461-1465. doi:10.1038/ng.257 PubMed DOI PMC
Szczepaniak LS, Nurenberg P, Leonard D, et al. . Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288(2):E462-E468. doi:10.1152/ajpendo.00064.2004 PubMed DOI
Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603-608. doi:10.2337/diabetes.54.3.603 PubMed DOI PMC
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133-2223. doi:10.1152/physrev.00063.2017 PubMed DOI PMC
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852-871. doi:10.1016/j.cell.2012.02.017 PubMed DOI PMC
Lara-Castro C, Newcomer BR, Rowell J, et al. . Effects of short-term very low-calorie diet on intramyocellular lipid and insulin sensitivity in nondiabetic and type 2 diabetic subjects. Metabolism. 2008;57(1):1-8. doi:10.1016/j.metabol.2007.05.008 PubMed DOI PMC
Jazet IM, Schaart G, Gastaldelli A, et al. . Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients. Diabetologia. 2008;51(2):309-319. doi:10.1007/s00125-007-0862-2 PubMed DOI
Sinha R, Dufour S, Petersen KF, et al. . Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51(4):1022-1027. doi:10.2337/diabetes.51.4.1022 PubMed DOI
Moro C, Galgani JE, Luu L, et al. . Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab. 2009;94(9):3440-3447. doi:10.1210/jc.2009-0053 PubMed DOI PMC
Camastra S, Bonora E, Del Prato S, Rett K, Weck M, Ferrannini E; EGIR (European Group for the Study of Insulin Resistance) . Effect of obesity and insulin resistance on resting and glucose-induced thermogenesis in man. Int J Obes Relat Metab Disord. 1999;23(12):1307-1313. doi:10.1038/sj.ijo.0801072 PubMed DOI
Ravussin E, Acheson KJ, Vernet O, Danforth E, Jéquier E. Evidence that insulin resistance is responsible for the decreased thermic effect of glucose in human obesity. J Clin Invest. 1985;76(3):1268-1273. doi:10.1172/JCI112083 PubMed DOI PMC
Bowden VL, McMurray RG. Effects of training status on the metabolic responses to high carbohydrate and high fat meals. Int J Sport Nutr Exerc Metab. 2000;10(1):16-27. doi:10.1123/ijsnem.10.1.16 PubMed DOI
Nagai N, Sakane N, Moritani T. Metabolic responses to high-fat or low-fat meals and association with sympathetic nervous system activity in healthy young men. J Nutr Sci Vitaminol (Tokyo). 2005;51(5):355-360. doi:10.3177/jnsv.51.355 PubMed DOI
Thyfault JP, Richmond SR, Carper MJ, Potteiger JA, Hulver MW. Postprandial metabolism in resistance-trained versus sedentary males. Med Sci Sports Exerc. 2004;36(4):709-716. doi:10.1249/01.MSS.0000121946.98885.F5 PubMed DOI
Barr SB, Wright JC. Postprandial energy expenditure in whole-food and processed-food meals: implications for daily energy expenditure. Food Nutr Res. 2010;54:54. doi:10.3402/fnr.v54i0.5144 PubMed DOI PMC
Yuan C, Spiegelman D, Rimm EB, et al. . Relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records compared with urinary recovery and plasma concentration biomarkers: findings for women. Am J Epidemiol. 2017. doi:10.1093/aje/kww104 PubMed DOI PMC
Effect of a Vegan Diet on Alzheimer's Disease
ClinicalTrials.gov
NCT02939638