Effect of a Vegan Diet on Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Grant No. 6980382
Institutional Support of Excellence 2 2. LF UK
project nr. LX22NPO5107 (MEYS)
EU - Next Generation EU
PubMed
36499257
PubMed Central
PMC9738978
DOI
10.3390/ijms232314924
PII: ijms232314924
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, cognition, vegan diet,
- MeSH
- Alzheimerova nemoc * etiologie prevence a kontrola MeSH
- dieta veganská * MeSH
- dieta vegetariánská MeSH
- dieta MeSH
- lidé MeSH
- mikroživiny MeSH
- vegani MeSH
- vitaminy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikroživiny MeSH
- vitaminy MeSH
There is evidence indicating that a vegan diet could be beneficial in the prevention of neurodegenerative disorders, including Alzheimer's disease (AD). The purpose of this review is to summarize the current knowledge on the positive and negative aspects of a vegan diet regarding the risk of AD. Regarding AD prevention, a vegan diet includes low levels of saturated fats and cholesterol, contributing to a healthy blood lipid profile. Furthermore, it is rich in phytonutrients, such as vitamins, antioxidants, and dietary fiber, that may help prevent cognitive decline. Moreover, a vegan diet contributes to the assumption of quercetin, a natural inhibitor of monoamine oxidase (MAO), which can contribute to maintaining mental health and reducing AD risk. Nonetheless, the data available do not allow an assessment of whether strict veganism is beneficial for AD prevention compared with vegetarianism or other diets. A vegan diet lacks specific vitamins and micronutrients and may result in nutritional deficiencies. Vegans not supplementing micronutrients are more prone to vitamin B12, vitamin D, and DHA deficiencies, which have been linked to AD. Thus, an evaluation of the net effect of a vegan diet on AD prevention and/or progression should be ascertained by taking into account all the positive and negative effects described here.
Zobrazit více v PubMed
Share of Vegans in European Countries. 2021. [(accessed on 31 August 2022)]. Available online: https://www.statista.com/forecasts/1256518/share-of-vegans-in-european-countries/
Springmann M., Wiebe K., Mason-D’Croz D., Sulser T.B., Rayner M., Scarborough P. Health and Nutritional Aspects of Sustainable Diet Strategies and Their Association with Environmental Impacts: A Global Modelling Analysis with Country-Level Detail. Lancet Planet. Health. 2018;2:e451–e461. doi: 10.1016/S2542-5196(18)30206-7. PubMed DOI PMC
Reasons for Being Vegan in Europe. 2019. [(accessed on 31 August 2022)]. Available online: https://www.statista.com/statistics/1263270/survey-reasons-for-being-vegan-in-europe/
Miki A.J., Livingston K.A., Karlsen M.C., Folta S.C., McKeown N.M. Using Evidence Mapping to Examine Motivations for Following Plant-Based Diets. Curr. Dev. Nutr. 2020;4:nzaa013. doi: 10.1093/cdn/nzaa013. PubMed DOI PMC
Nichols E., Steinmetz J.D., Vollset S.E., Fukutaki K., Chalek J., Abd-Allah F., Abdoli A., Abualhasan A., Abu-Gharbieh E., Akram T.T., et al. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105–e125. doi: 10.1016/S2468-2667(21)00249-8. PubMed DOI PMC
Lindsay J., Laurin D., Verreault R., Hébert R., Helliwell B., Hill G.B., McDowell I. Risk factors for Alzheimer’s disease: A Prospective Analysis from the Canadian Study of Health and Aging. Am. J. Epidemiol. 2002;156:445–453. doi: 10.1093/aje/kwf074. PubMed DOI
Zhang M., Katzman R., Salmon D., Jin H., Cai G., Wang Z., Qu G., Grant I., Yu E., Levy P., et al. The prevalence of dementia and Alzheimer’s disease in Shanghai, China: Impact of age, gender, and education. Ann. Neurol. 1990;27:428–437. doi: 10.1002/ana.410270412. PubMed DOI
Brookmeyer R., Evans D.A., Hebert L., Langa K.M., Heeringa S.G., Plassman B.L., Kukull W.A. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s Dement. 2011;7:61–73. doi: 10.1016/j.jalz.2010.11.007. PubMed DOI PMC
Green R.C., Cupples L.A., Kurz A., Auerbach S., Go R., Sadovnick D., Duara R., Kukull W.A., Chui H., Edeki T., et al. Depression as a Risk Factor for Alzheimer Disease. Arch. Neurol. 2003;60:753–759. doi: 10.1001/archneur.60.5.753. PubMed DOI
Ownby R.L., Crocco E., Acevedo A., John V., Loewenstein D. Depression and Risk for Alzheimer Disease. Arch. Gen. Psychiatry. 2006;63:530. doi: 10.1001/archpsyc.63.5.530. PubMed DOI PMC
Cantón-Habas V., Rich-Ruiz M., Romero-Saldaña M., Carrera-González M.D.P. Depression as a Risk Factor For Dementia and Alzheimer’s Disease. Biomedicines. 2020;8:457. doi: 10.3390/biomedicines8110457. PubMed DOI PMC
Lennon M.J., Makkar S.R., Crawford J.D., Sachdev P.S. Midlife Hypertension and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2019;71:307–316. doi: 10.3233/JAD-190474. PubMed DOI
Rajan K.B., Barnes L.L., Wilson R.S., Weuve J., McAninch E.A., Evans D.A. Blood Pressure and Risk of Incident Alzheimer’s Disease Dementia by Antihypertensive Medications and APOE Ε4 Allele. Ann. Neurol. 2018;83:935–944. doi: 10.1002/ana.25228. PubMed DOI PMC
Kivipelto M., Helkala E.L., Laakso M.P., Hänninen T., Hallikainen M., Alhainen K., Iivonen S., Mannermaa A., Tuomilehto J., Nissinen A., et al. Apolipoprotein E Epsilon4 Allele, Elevated Midlife Total Cholesterol Level, and High Midlife Systolic Blood Pressure Are Independent Risk Factors for Late-Life Alzheimer Disease. Ann. Intern. Med. 2002;137:149–155. doi: 10.7326/0003-4819-137-3-200208060-00006. PubMed DOI
Huang C.C., Chung C.M., Leu H.B., Lin L.Y., Chiu C.C., Hsu C.Y., Chiang C.H., Huang P.H., Chen T.J., Lin S.J., et al. Diabetes Mellitus and the Risk of Alzheimer’s Disease: A Nationwide Population-Based Study. PLoS ONE. 2014;9:e87095. doi: 10.1371/journal.pone.0087095. PubMed DOI PMC
Profenno L.A., Porsteinsson A.P., Faraone S.V. Meta-Analysis of Alzheimer’s Disease Risk with Obesity, Diabetes, and Related Disorders. Biol. Psychiatry. 2010;67:505–512. doi: 10.1016/j.biopsych.2009.02.013. PubMed DOI
Arvanitakis Z., Wilson R.S., Bienias J.L., Evans D.A., Bennett D.A. Diabetes Mellitus and Risk of Alzheimer Disease and Decline in Cognitive Function. Arch. Neurol. 2004;61:661–666. doi: 10.1001/archneur.61.5.661. PubMed DOI
Hassing L.B., Dahl A.K., Thorvaldsson V., Berg S., Gatz M., Pedersen N.L., Johansson B. Overweight in Midlife and Risk of Dementia: A 40-Year Follow-Up Study. Int. J. Obes. 2009;33:893–898. doi: 10.1038/ijo.2009.104. PubMed DOI PMC
Razay G., Vreugdenhil A. Obesity in Middle Age and Future Risk of Dementia: Midlife Obesity Increases Risk of Future Dementia. BMJ. 2005;331:455. doi: 10.1136/bmj.331.7514.455. PubMed DOI PMC
Kivipelto M., Ngandu T., Fratiglioni L., Viitanen M., Kåreholt I., Winblad B., Helkala E.L., Tuomilehto J., Soininen H., Nissinen A. Obesity and Vascular Risk Factors at Midlife and the Risk of Dementia and Alzheimer Disease. Arch. Neurol. 2005;62:1556–1560. doi: 10.1001/archneur.62.10.1556. PubMed DOI
Hamer M., Chida Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol. Med. 2008;39:3–11. doi: 10.1017/S0033291708003681. PubMed DOI
Beckett M.W., Ardern C.I., Rotondi M.A. A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer’s disease in older adults. BMC Geriatr. 2015;15:9. doi: 10.1186/s12877-015-0007-2. PubMed DOI PMC
Stern Y., Gurland B., Tatemichi T.K., Tang M.X., Wilder D., Mayeux R. Influence of Education and Occupation on the Incidence of Alzheimer’s Disease. JAMA. 1994;271:1004–1010. doi: 10.1001/jama.1994.03510370056032. PubMed DOI
Samadi M., Moradi S., Moradinazar M., Mostafai R., Pasdar Y. Dietary pattern in relation to the risk of Alzheimer’s disease: A systematic review. Neurol. Sci. 2019;40:2031–2043. doi: 10.1007/s10072-019-03976-3. PubMed DOI
Pistollato F., Iglesias R.C., Ruiz R., Aparicio S., Crespo J., Lopez L.D., Manna P.P., Giampieri F., Battino M. Nutritional Patterns Associated with the Maintenance of Neurocognitive Functions and the Risk of Dementia and Alzheimer’s Disease: A Focus on Human Studies. Pharmacol. Res. 2018;131:32–43. doi: 10.1016/j.phrs.2018.03.012. PubMed DOI
Van Den Brink A.C., Brouwer-Brolsma E.M., Berendsen A.A.M., Van De Rest O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease—A Review. Adv. Nutr. 2019;10:1040–1065. doi: 10.1093/advances/nmz054. PubMed DOI PMC
Morris M.C., Tangney C.C., Wang Y., Sacks F.M., Barnes L.L., Bennett D.A., Aggarwal N.T. MIND Diet Slows Cognitive Decline with Aging. Alzheimer’s Dement. 2015;11:1015–1022. doi: 10.1016/j.jalz.2015.04.011. PubMed DOI PMC
Morris M.C., Tangney C.C., Wang Y., Sacks F.M., Bennett D.A., Aggarwal N.T. MIND Diet Associated with Reduced Incidence of Alzheimer’s Disease. Alzheimer’s Dement. 2015;11:1007–1014. doi: 10.1016/j.jalz.2014.11.009. PubMed DOI PMC
WHO European Office for the Prevention and Control of Noncommunicable Diseases . Plant-Based Diets and Their Impact on Health, Sustainability and the Environment: A Review of the Evidence. WHO Regional Office for Europe; Copenhagen, Denmark: 2021. pp. 1–11.
Melina V., Craig W., Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016;116:1970–1980. doi: 10.1016/j.jand.2016.09.025. PubMed DOI
Richter M., Boeing H., Grünewald-Funk D., Heseker H., Kroke A., Leschik-Bonnet E., Oberritter H., Strohm D., Watzl B. Vegan Diet. Position of the German Nutrition Society (DGE) Ernaehrungs Umsch. Int. 2016;63:92–102. doi: 10.4455/eu.2016.021. DOI
Pye A., Bash K., Joiner A., Beenstock J. Good for the Planet and Good for Our Health: The Evidence for Whole-Food Plant-Based Diets. BJPsych Int. 2022;19:90–92. doi: 10.1192/bji.2022.7. DOI
Termannsen A.D., Clemmensen K.K.B., Thomsen J.M., Nørgaard O., Díaz L.J., Torekov S.S., Quist J.S., Færch K. Effects of Vegan Diets on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Obes. Rev. 2022;23:e13462. doi: 10.1111/obr.13462. PubMed DOI PMC
Selinger E., Neuenschwander M., Koller A., Gojda J., Kühn T., Schwingshackl L., Barbaresko J., Schlesinger S. Evidence of a Vegan Diet for Health Benefits and Risks—An Umbrella Review of Meta-Analyses of Observational and Clinical Studies. Crit. Rev. Food Sci. Nutr. 2022 doi: 10.1080/10408398.2022.2075311. PubMed DOI
Bakaloudi D.R., Halloran A., Rippin H.L., Oikonomidou A.C., Dardavesis T.I., Williams J., Wickramasinghe K., Breda J., Chourdakis M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021;40:3503–3521. doi: 10.1016/j.clnu.2020.11.035. PubMed DOI
Neufingerl N., Eilander A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients. 2021;14:29. doi: 10.3390/nu14010029. PubMed DOI PMC
Weikert C., Trefflich I., Menzel J., Obeid R., Longree A., Dierkes J., Meyer K., Herter-Aeberli I., Mai K., Stangl G.I., et al. Vitamin and Mineral Status in a Vegan Diet. Dtsch. Arztebl. Int. 2020;117:575–582. doi: 10.3238/arztebl.2020.0575. PubMed DOI PMC
Zhou Y., Wang J., Cao L., Shi M., Liu H., Zhao Y., Xia Y. Fruit and Vegetable Consumption and Cognitive Disorders in Older Adults: A Meta-Analysis of Observational Studies. Front. Nutr. 2022;9:871061. doi: 10.3389/fnut.2022.871061. PubMed DOI PMC
Loef M., Walach H. Fruit, Vegetables and Prevention of Cognitive Decline or Dementia: A Systematic Review of Cohort Studies. J. Nutr. Health Aging. 2012;16:626–630. doi: 10.1007/s12603-012-0097-x. PubMed DOI
Jiang X., Huang J., Song D., Deng R., Wei J., Zhang Z. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Cognitive Impairment and Dementia: Meta-Analysis. Front. Aging Neurosci. 2017;9:18. doi: 10.3389/fnagi.2017.00018. PubMed DOI PMC
Fieldhouse J.L.P., Doorduijn A.S., de Leeuw F.A., Verhaar B.J.H., Koene T., Wesselman L.M.P., de van der Schueren M., Visser M., van de Rest O., Scheltens P., et al. A Suboptimal Diet Is Associated with Poorer Cognition: The NUDAD Project. Nutrients. 2020;12:703. doi: 10.3390/nu12030703. PubMed DOI PMC
Collins A.E., Saleh T.M., Kalisch B.E. Naturally Occurring Antioxidant Therapy in Alzheimer’s Disease. Antioxidants. 2022;11:213. doi: 10.3390/antiox11020213. PubMed DOI PMC
Heneka M.T., Golenbock D.T., Latz E. Innate Immunity in Alzheimer’s Disease. Nat. Immunol. 2015;16:229–236. doi: 10.1038/ni.3102. PubMed DOI
Su C., Zhao K., Xia H., Xu Y. Peripheral Inflammatory Biomarkers in Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Psychogeriatrics. 2019;19:300–309. doi: 10.1111/psyg.12403. PubMed DOI
Passamonti L., Tsvetanov K.A., Jones P.S., Bevan-Jones W.R., Arnold R., Borchert R.J., Mak E., Su L., O’Brien J.T., Rowe J.B. Neuroinflammation and Functional Connectivity in Alzheimer’s Disease: Interactive Influences on Cognitive Performance. J. Neurosci. 2019;39:7218–7226. doi: 10.1523/JNEUROSCI.2574-18.2019. PubMed DOI PMC
Barbaresko J., Koch M., Schulze M.B., Nöthlings U. Dietary Pattern Analysis and Biomarkers of Low-Grade Inflammation: A Systematic Literature Review. Nutr. Rev. 2013;71:511–527. doi: 10.1111/nure.12035. PubMed DOI
Menzel J., Biemann R., Longree A., Isermann B., Mai K., Schulze M.B., Abraham K., Weikert C. Associations of a Vegan Diet with Inflammatory Biomarkers. Sci. Rep. 2020;10:1933. doi: 10.1038/s41598-020-58875-x. PubMed DOI PMC
Šebeková K., Krajčovičová-Kudláčková M., Schinzel R., Faist V., Klvanová J., Heidland A. Plasma Levels of Advanced Glycation End Products in Healthy, Long-Term Vegetarians and Subjects on a Western Mixed Diet. Eur. J. Nutr. 2001;40:275–281. doi: 10.1007/s394-001-8356-3. PubMed DOI
Franco-De-Moraes A.C., De Almeida-Pititto B., Da Rocha Fernandes G., Gomes E.P., Da Costa Pereira A., Ferreira S.R.G. Worse Inflammatory Profile in Omnivores than in Vegetarians Associates with the Gut Microbiota Composition. Diabetol. Metab. Syndr. 2017;9:62. doi: 10.1186/s13098-017-0261-x. PubMed DOI PMC
Sutliffe J.T., Wilson L.D., de Heer H.D., Foster R.L., Carnot M.J. C-Reactive Protein Response to a Vegan Lifestyle Intervention. Complement. Ther. Med. 2015;23:32–37. doi: 10.1016/j.ctim.2014.11.001. PubMed DOI
Visser M., Bouter L.M., McQuillan G.M., Wener M.H., Harris T.B. Elevated C-Reactive Protein Levels in Overweight and Obese Adults. JAMA. 1999;282:2131–2135. doi: 10.1001/jama.282.22.2131. PubMed DOI
Menzel J., Jabakhanji A., Biemann R., Mai K., Abraham K., Weikert C. Systematic Review and Meta-Analysis of the Associations of Vegan and Vegetarian Diets with Inflammatory Biomarkers. Sci. Rep. 2020;10:21736. doi: 10.1038/s41598-020-78426-8. PubMed DOI PMC
Chen H., Du Y., Liu S., Ge B., Ji Y., Huang G. Association between Serum Cholesterol Levels and Alzheimer’s Disease in China: A Case-Control Study. Int. J. Food Sci. Nutr. 2019;70:405–411. doi: 10.1080/09637486.2018.1508426. PubMed DOI
Marcum Z.A., Walker R., Bobb J.F., Sin M.K., Gray S.L., Bowen J.D., McCormick W., McCurry S.M., Crane P.K., Larson E.B. Serum Cholesterol and Incident Alzheimer’s Disease: Findings from the Adult Changes in Thought Study. J. Am. Geriatr. Soc. 2018;66:2344–2352. doi: 10.1111/jgs.15581. PubMed DOI PMC
Rantanen K.K., Strandberg A.Y., Pitkälä K., Tilvis R., Salomaa V., Strandberg T.E. Cholesterol in Midlife Increases the Risk of Alzheimer’s Disease during an up to 43-Year Follow-Up. Eur. Geriatr. Med. 2014;5:390–393. doi: 10.1016/j.eurger.2014.05.002. DOI
Helzner E.P., Luchsinger J.A., Scarmeas N., Cosentino S., Brickman A.M., Glymour M.M., Stern Y. Contribution of Vascular Risk Factors to the Progression in Alzheimer Disease. Arch. Neurol. 2009;66:343–348. doi: 10.1001/archneur.66.3.343. PubMed DOI PMC
Dinu M., Abbate R., Gensini G.F., Casini A., Sofi F. Vegetarian, Vegan Diets and Multiple Health Outcomes: A Systematic Review with Meta-Analysis of Observational Studies. Crit. Rev. Food Sci. Nutr. 2017;57:3640–3649. doi: 10.1080/10408398.2016.1138447. PubMed DOI
Appleby P.N., Davey G.K., Key T.J. Hypertension and Blood Pressure among Meat Eaters, Fish Eaters, Vegetarians and Vegans in EPIC–Oxford. Public Health Nutr. 2002;5:645–654. doi: 10.1079/PHN2002332. PubMed DOI
Pollakova D., Andreadi A., Pacifici F., Della-Morte D., Lauro D., Tubili C. The Impact of Vegan Diet in the Prevention and Treatment of Type 2 Diabetes: A Systematic Review. Nutrients. 2021;13:2123. doi: 10.3390/nu13062123. PubMed DOI PMC
Elorinne A.L., Alfthan G., Erlund I., Kivimäki H., Paju A., Salminen I., Turpeinen U., Voutilainen S., Laakso J. Food and Nutrient Intake and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLoS ONE. 2016;11:e0148235. doi: 10.1371/journal.pone.0148235. PubMed DOI PMC
Kim Y.A., Keogh J.B., Clifton P.M. Polyphenols and Glycemic Control. Nutrients. 2016;8:17. doi: 10.3390/nu8010017. PubMed DOI PMC
Ylönen K., Saloranta C., Kronberg-Kippilä C., Groop L., Aro A., Virtanen S.M. Associations of Dietary Fiber with Glucose Metabolism in Nondiabetic Relatives of Subjects with Type 2 Diabetes: The Botnia Dietary Study. Diabetes Care. 2003;26:1979–1985. doi: 10.2337/diacare.26.7.1979. PubMed DOI
Kahleova H., Petersen K.F., Shulman G.I., Alwarith J., Rembert E., Tura A., Hill M., Holubkov R., Barnard N.D. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults: A Randomized Clinical Trial. JAMA Netw. Open. 2020;3:e2025454. doi: 10.1001/jamanetworkopen.2020.25454. PubMed DOI PMC
Bairamian D., Sha S., Rolhion N., Sokol H., Dorothée G., Lemere C.A., Krantic S. Microbiota in Neuroinflammation and Synaptic Dysfunction: A Focus on Alzheimer’s Disease. Mol. Neurodegener. 2022;17:19. doi: 10.1186/s13024-022-00522-2. PubMed DOI PMC
Lazar E., Sherzai A., Adeghate J., Sherzai D. Gut Dysbiosis, Insulin Resistance and Alzheimer’s Disease: Review of a Novel Approach to Neurodegeneration. Front. Biosci. (Schol. Ed.) 2021;13:17–29. doi: 10.1016/j.jalz.2018.06.945. PubMed DOI
Liu S., Gao J., Zhu M., Liu K., Zhang H.L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol. Neurobiol. 2020;57:5026–5043. doi: 10.1007/s12035-020-02073-3. PubMed DOI PMC
Vogt N.M., Kerby R.L., Dill-McFarland K.A., Harding S.J., Merluzzi A.P., Johnson S.C., Carlsson C.M., Asthana S., Zetterberg H., Blennow K., et al. Gut Microbiome Alterations in Alzheimer’s Disease. Sci. Rep. 2017;7:13537. doi: 10.1038/s41598-017-13601-y. PubMed DOI PMC
Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, Gut Microbiota, and Alzheimer’s Disease. J. Neuroinflamm. 2019;16:108. doi: 10.1186/s12974-019-1494-4. PubMed DOI PMC
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature. 2013;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Dawczynski C., Weidauer T., Richert C., Schlattmann P., Dawczynski K., Kiehntopf M. Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores—The Nutritional Evaluation (NuEva) Study. Front. Nutr. 2022;9:819106. doi: 10.3389/fnut.2022.819106. PubMed DOI PMC
Wong M.W., Yi C.H., Liu T.T., Lei W.Y., Hung J.S., Lin C.L., Lin S.Z., Chen C.L. Impact of Vegan Diets on Gut Microbiota: An Update on the Clinical Implications. Tzu-Chi Med. J. 2018;30:200–203. doi: 10.4103/tcmj.tcmj_21_18. PubMed DOI PMC
Tomova A., Bukovsky I., Rembert E., Yonas W., Alwarith J., Barnard N.D., Kahleova H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019;6:47. doi: 10.3389/fnut.2019.00047. PubMed DOI PMC
Kohnert E., Kreutz C., Binder N., Hannibal L., Gorkiewicz G., Müller A., Storz M.A., Huber R., Lederer A.K. Changes in Gut Microbiota after a Four-Week Intervention with Vegan vs. Meat-Rich Diets in Healthy Participants: A Randomized Controlled Trial. Microorganisms. 2021;9:727. doi: 10.3390/microorganisms9040727. PubMed DOI PMC
D’Argenio V., Veneruso I., Gong C., Cecarini V., Bonfili L., Eleuteri A.M. Gut Microbiome and Mycobiome Alterations in an In Vivo Model of Alzheimer’s Disease. Genes. 2022;13:1564. doi: 10.3390/genes13091564. PubMed DOI PMC
Ling Z., Zhu M., Yan X., Cheng Y., Shao L., Liu X., Jiang R., Wu S. Structural and Functional Dysbiosis of Fecal Microbiota in Chinese Patients With Alzheimer’s Disease. Front. Cell Dev. Biol. 2021;8:634069. doi: 10.3389/fcell.2020.634069. PubMed DOI PMC
Prochazkova M., Budinska E., Kuzma M., Pelantova H., Hradecky J., Heczkova M., Daskova N., Bratova M., Modos I., Videnska P., et al. Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Front. Nutr. 2022;8:783302. doi: 10.3389/fnut.2021.783302. PubMed DOI PMC
Losno E.A., Sieferle K., Armando Perez-Cueto F.J., Ritz C., Losno C., Sieferle E.A., Perez-Cueto K., Ritz F.J.A. Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients. 2021;13:2402. doi: 10.3390/nu13072402. PubMed DOI PMC
Qian X.H., Xie R.Y., Liu X.L., Chen S.D., Tang H.D. Mechanisms of Short-Chain Fatty Acids Derived from Gut Microbiota in Alzheimer’s Disease. Aging Dis. 2022;13:1252. doi: 10.14336/AD.2021.1215. PubMed DOI PMC
Wu L., Han Y., Zheng Z., Peng G., Liu P., Yue S., Zhu S., Chen J., Lv H., Shao L., et al. Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host–Microbe Interplay. Nutrients. 2021;13:228. doi: 10.3390/nu13010228. PubMed DOI PMC
Trefflich I., Dietrich S., Braune A., Abraham K., Weikert C. Short-and Branched-Chain Fatty Acids as Fecal Markers for Microbiota Activity in Vegans and Omnivores. Nutrients. 2021;13:1808. doi: 10.3390/nu13061808. PubMed DOI PMC
Wu G.D., Compher C., Chen E.Z., Smith S.A., Shah R.D., Bittinger K., Chehoud C., Albenberg L.G., Nessel L., Gilroy E., et al. Comparative Metabolomics in Vegans and Omnivores Reveal Constraints on Diet-Dependent Gut Microbiota Metabolite Production. Gut. 2016;65:63–72. doi: 10.1136/gutjnl-2014-308209. PubMed DOI PMC
Reiss A., Jacobi M., Rusch K., Andreas S. Association of Dietary Type with Fecal Microbiota and Short Chain Fatty Acids in Vegans and Omnivores. J. Int. Soc. Microbiota. 2016;1:1–19. doi: 10.18143/jism_v1i1.782. DOI
De Filippis F., Pellegrini N., Vannini L., Jeffery I.B., La Storia A., Laghi L., Serrazanetti D.I., Di Cagno R., Ferrocino I., Lazzi C., et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut. 2016;65:1812–1821. doi: 10.1136/gutjnl-2015-309957. PubMed DOI
Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., Festari C., Ferrari C., Guerra U.P., Paghera B., Muscio C., et al. Association of Brain Amyloidosis with Pro-Inflammatory Gut Bacterial Taxa and Peripheral Inflammation Markers in Cognitively Impaired Elderly. Neurobiol. Aging. 2017;49:60–68. doi: 10.1016/j.neurobiolaging.2016.08.019. PubMed DOI
Gentile C.L., Weir T.L. The Gut Microbiota at the Intersection of Diet and Human Health. Science. 2018;362:776–780. doi: 10.1126/science.aau5812. PubMed DOI
Yang D.S., Yip C.M., Huang T.H.J., Chakrabartty A., Fraser P.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones. JBC. 1999;274:32970–32974. doi: 10.1074/jbc.274.46.32970. PubMed DOI
Vogt N.M., Romano K.A., Darst B.F., Engelman C.D., Johnson S.C., Carlsson C.M., Asthana S., Blennow K., Zetterberg H., Bendlin B.B., et al. The Gut Microbiota-Derived Metabolite Trimethylamine N-Oxide Is Elevated in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2018;10:124. doi: 10.1186/s13195-018-0451-2. PubMed DOI PMC
Arrona Cardoza P., Spillane M.B., Morales Marroquin E. Alzheimer’s disease and gut microbiota: Does trimethylamine N-oxide (TMAO) play a role? Nutr. Rev. 2022;8:271–281. doi: 10.1093/nutrit/nuab022. PubMed DOI
Zarbock K.R., Han J.H., Singh A.P., Thomas S.P., Bendlin B.B., Denu J.M., Yu J.-P.J., Rey F.E., Ulland T.K. Trimethylamine N-Oxide Reduces Neurite Density and Plaque Intensity in a Murine Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2022;90:585–597. doi: 10.3233/JAD-220413. PubMed DOI PMC
Li D., Ke Y., Zhan R., Liu C., Zhao M., Zeng A., Shi X., Ji L., Cheng S., Pan B., et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell. 2018;17:e12768. doi: 10.1111/acel.12768. PubMed DOI PMC
Gao Q., Wang Y., Wang X., Fu S., Zhang X., Wang R., Zhang X. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: A potential therapeutic approach for Alzheimer’s disease. Aging. 2019;11:8642–8663. doi: 10.18632/aging.102352. PubMed DOI PMC
Lombardo M., Aulisa G., Marcon D., Rizzo G. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans. Curr. Nutr. Rep. 2022;11:56–68. doi: 10.1007/s13668-021-00387-9. PubMed DOI
Argyridou S., Davies M.J., Biddle G.J.H., Bernieh D., Suzuki T., Dawkins N.P., Rowlands A.V., Khunti K., Smith A.C., Yates T. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J. Nutr. 2021;151:1844–1853. doi: 10.1093/jn/nxab046. PubMed DOI PMC
Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585. doi: 10.1038/nm.3145. PubMed DOI PMC
Obeid R., Awwad H.M., Keller M., Geisel J. Trimethylamine-N-oxide and its biological variations in vegetarians. Eur. J. Nutr. 2017;56:2599–2609. doi: 10.1007/s00394-016-1295-9. PubMed DOI
Jain R., Larsuphrom P., Degremont A., Latunde-Dada G.O., Philippou E. Association between Vegetarian and Vegan Diets and Depression: A Systematic Review. Nutr. Bull. 2022;47:27–49. doi: 10.1111/nbu.12540. PubMed DOI
Iguacel I., Huybrechts I., Moreno L.A., Michels N. Vegetarianism and Veganism Compared with Mental Health and Cognitive Outcomes: A Systematic Review and Meta-Analysis. Nutr. Rev. 2021;79:361–381. doi: 10.1093/nutrit/nuaa030. PubMed DOI
Link L.B., Hussaini N.S., Jacobson J.S. Change in Quality of Life and Immune Markers after a Stay at a Raw Vegan Institute: A Pilot Study. Complement. Ther. Med. 2008;16:124–130. doi: 10.1016/j.ctim.2008.02.004. PubMed DOI PMC
Sultana B., Anwar F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008;108:879–884. doi: 10.1016/j.foodchem.2007.11.053. PubMed DOI
Grewal A.K., Singh T.G., Sharma D., Sharma V., Singh M., Rahman M.H., Najda A., Walasek-Janusz M., Kamel M., Albadrani G.M. Mechanistic Insights and Perspectives Involved in Neuroprotective Action of Quercetin. Biomed. Pharmacother. 2021;140:111729. doi: 10.1016/j.biopha.2021.111729. PubMed DOI
Dixon Clarke S.E., Ramsay R.R. Dietary Inhibitors of Monoamine Oxidase A. J. Neural Transm. 2011;118:1031–1041. doi: 10.1007/s00702-010-0537-x. PubMed DOI
Zhang X.W., Chen J.Y., Ouyang D., Lu J.H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies. Int. J. Mol. Sci. 2020;21:493. doi: 10.3390/ijms21020493. PubMed DOI PMC
Paula P.C., Maria S.G.A., Luis C.H., Patricia C.G.G. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules. 2019;24:2287. doi: 10.3390/molecules24122287. PubMed DOI PMC
Mehta V., Parashar A., Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol. Behav. 2017;171:69–78. doi: 10.1016/j.physbeh.2017.01.006. PubMed DOI
Ke F., Li H.R., Chen X.X., Gao X.R., Huang L.L., Du A.Q., Jiang C., Li H., Ge J.F. Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of copine 6 and TREM1/2 in the hippocampus and PFC. Front. Pharmacol. 2020;10:544. doi: 10.3389/fphar.2019.01544. PubMed DOI PMC
Taber L., Chiu C.H., Whelan J. Assessment of the arachidonic acid content in foods commonly consumed in the American diet. Lipids. 1998;33:1151–1157. doi: 10.1007/s11745-998-0317-4. PubMed DOI
Mądry E., Lisowska A., Grebowiec P., Walkowiak J. The Impact of Vegan Diet on B-12 Status in Healthy Omnivores: Five-Year Prospective Study. Acta Sci. Pol. Technol. Aliment. 2012;2:209–212. PubMed
Schüpbach R., Wegmüller R., Berguerand C., Bui M., Herter-Aeberli I. Micronutrient Status and Intake in Omnivores, Vegetarians and Vegans in Switzerland. Eur. J. Nutr. 2017;56:283–293. doi: 10.1007/s00394-015-1079-7. PubMed DOI
Kristensen N.B., Madsen M.L., Hansen T.H., Allin K.H., Hoppe C., Fagt S., Lausten M.S., Gøbel R.J., Vestergaard H., Hansen T., et al. Intake of Macro- and Micronutrients in Danish Vegans. Nutr. J. 2015;14:115. doi: 10.1186/s12937-015-0103-3. PubMed DOI PMC
Rathod R., Kale A., Joshi S. Novel Insights into the Effect of Vitamin B12 and Omega-3 Fatty Acids on Brain Function. J. Biomed. Sci. 2016;23:17. doi: 10.1186/s12929-016-0241-8. PubMed DOI PMC
Scalabrino G. The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: Lessons learned from its deficiency. Prog. Neurobiol. 2009;88:203–220. doi: 10.1016/j.pneurobio.2009.04.004. PubMed DOI
Vogiatzoglou A., Refsum H., Johnston C., Smith S.M., Bradley K.M., De Jager C., Budge M.M., Smith A.D. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology. 2008;71:826–832. doi: 10.1212/01.wnl.0000325581.26991.f2. PubMed DOI
Tangney C.C., Aggarwal N.T., Li H., Wilson R.S., Decarli C., Evans D.A., Morris M.C. Vitamin B12, cognition, and brain MRI measures: A cross-sectional examination. Neurology. 2011;77:1773. doi: 10.1212/WNL.0b013e3182315a33. PubMed DOI PMC
Jarquin Campos A., Risch L., Nydegger U., Wiesner J., Vazquez Van Dyck M., Renz H., Stanga Z., Risch M. Diagnostic Accuracy of Holotranscobalamin, Vitamin B12, Methylmalonic Acid, and Homocysteine in Detecting B12 Deficiency in a Large, Mixed Patient Population. Dis. Markers. 2020;2020:7468506. doi: 10.1155/2020/7468506. PubMed DOI PMC
Wang Q., Zhao J., Chang H., Liu X., Zhu R. Homocysteine and Folic Acid: Risk Factors for Alzheimer’s Disease—An Updated Meta-Analysis. Front. Aging Neurosci. 2021;13:665114. doi: 10.3389/fnagi.2021.665114. PubMed DOI PMC
De Jager C.A., Oulhaj A., Jacoby R., Refsum H., Smith A.D. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: A randomized controlled trial. Int. J. Ger. Psych. 2012;27:592–600. doi: 10.1002/gps.2758. PubMed DOI
Smith A.D., Smith S.M., de Jager C.A., Whitbread P., Johnston C., Agacinski G., Oulhaj A., Bradley K.M., Jacoby R., Refsum H. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial. PLoS ONE. 2010;5:e12244. doi: 10.1371/journal.pone.0012244. PubMed DOI PMC
Douaud G., Refsum H., De Jager C.A., Jacoby R., Nichols T.E., Smith S.M., Smith A.D. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. USA. 2013;110:9523–9528. doi: 10.1073/pnas.1301816110. PubMed DOI PMC
Marques de Brito B., Campos V. de M.; Neves, F.J.; Ramos, L.R.; Tomita, L.Y. Vitamin B12 Sources in Non-Animal Foods: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2022;28:1–15. doi: 10.1080/10408398.2022.2053057. PubMed DOI
Nakos M., Pepelanova I., Beutel S., Krings U., Berger R.G., Scheper T. Isolation and Analysis of Vitamin B12 from Plant Samples. Food Chem. 2017;216:301–308. doi: 10.1016/j.foodchem.2016.08.037. PubMed DOI
Lederer A.K., Hannibal L., Hettich M., Behringer S., Spiekerkoetter U., Steinborn C., Gründemann C., Zimmermann-Klemd A.M., Müller A., Simmet T., et al. Vitamin B12 Status Upon Short-Term Intervention with a Vegan Diet—A Randomized Controlled Trial in Healthy Participants. Nutrients. 2019;11:2815. doi: 10.3390/nu11112815. PubMed DOI PMC
Selinger E., Kühn T., Procházková M., Anděl M., Gojda J. Vitamin B12 Deficiency Is Prevalent Among Czech Vegans Who Do Not Use Vitamin B12 Supplements. Nutrients. 2019;11:3019. doi: 10.3390/nu11123019. PubMed DOI PMC
Cashman K.D., Dowling K.G., Škrabáková Z., Gonzalez-Gross M., Valtueña J., De Henauw S., Moreno L., Damsgaard C.T., Michaelsen K.F., Mølgaard C., et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016;103:1033–1044. doi: 10.3945/ajcn.115.120873. PubMed DOI PMC
Kalueff A.V., Eremin K.O., Tuohimaa P. Mechanisms of Neuroprotective Action of Vitamin D3. Biochemistry. 2004;69:738–741. doi: 10.1023/B:BIRY.0000040196.65686.2f. PubMed DOI
Liu D., Meng X., Tian Q., Cao W., Fan X., Wu L., Song M., Meng Q., Wang W., Wang Y. Vitamin D and Multiple Health Outcomes: An Umbrella Review of Observational Studies, Randomized Controlled Trials, and Mendelian Randomization Studies. Adv. Nutr. 2022;13:1044–1062. doi: 10.1093/advances/nmab142. PubMed DOI PMC
Kalra A., Teixeira A.L., Diniz B.S. Association of Vitamin D Levels with Incident All-Cause Dementia in Longitudinal Observational Studies: A Systematic Review and Meta-Analysis. J. Prev. Alzheimer’s Dis. 2020;7:14–20. doi: 10.14283/jpad.2019.44. PubMed DOI
Shen L., Ji H.F. Vitamin D Deficiency Is Associated with Increased Risk of Alzheimer’s Disease and Dementia: Evidence from Meta-Analysis. Nutr. J. 2015;14:76. doi: 10.1186/s12937-015-0063-7. PubMed DOI PMC
Chai B., Gao F., Wu R., Dong T., Gu C., Lin Q., Zhang Y. Vitamin D Deficiency as a Risk Factor for Dementia and Alzheimer’s Disease: An Updated Meta-Analysis. BMC Neurol. 2019;19:284. doi: 10.1186/s12883-019-1500-6. PubMed DOI PMC
Annweiler C., Llewellyn D.J., Beauchet O. Low Serum Vitamin D Concentrations in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2013;33:659–674. doi: 10.3233/JAD-2012-121432. PubMed DOI
Mavraki E., Ioannidis P., Tripsianis G., Gioka T., Kolousi M., Vadikolias K. Vitamin D in Mild Cognitive Impairment and Alzheimer’s Disease. A Study in Older Greek Adults. Hippokratia. 2020;24:120–126. PubMed PMC
Jayedi A., Rashidy-Pour A., Shab-Bidar S. Vitamin D Status and Risk of Dementia and Alzheimer’s Disease: A Meta-Analysis of Dose-Response†. Nutr. Neurosci. 2019;22:750–759. doi: 10.1080/1028415X.2018.1436639. PubMed DOI
Menzel J., Longree A., Abraham K., Schulze M.B., Weikert C. Dietary and Plasma Phospholipid Profiles in Vegans and Omnivores—Results from the RBVD Study. Nutrients. 2022;14:2900. doi: 10.3390/nu14142900. PubMed DOI PMC
Sobiecki J.G., Appleby P.N., Bradbury K.E., Key T.J. High Compliance with Dietary Recommendations in a Cohort of Meat Eaters, Fish Eaters, Vegetarians, and Vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford Study. Nutr. Res. 2016;36:464–477. doi: 10.1016/j.nutres.2015.12.016. PubMed DOI PMC
Lane K.E., Wilson M., Hellon T.G., Davies I.G. Bioavailability and Conversion of Plant Based Sources of Omega-3 Fatty Acids—A Scoping Review to Update Supplementation Options for Vegetarians and Vegans. Crit. Rev. Food Sci. Nutr. 2022;62:4982–4997. doi: 10.1080/10408398.2021.1880364. PubMed DOI
Burns-Whitmore B., Froyen E., Heskey C., Parker T., Pablo G.S. Alpha-Linolenic and Linoleic Fatty Acids in the Vegan Diet: Do They Require Dietary Reference Intake/Adequate Intake Special Consideration? Nutrients. 2019;11:2365. doi: 10.3390/nu11102365. PubMed DOI PMC
Saunders A.V., Davis B.C., Garg M.L. Omega-3 polyunsaturated fatty acids and vegetarian diets. Med. J. Aust. 2013;19:22–26. doi: 10.5694/mja11.11507. PubMed DOI
Yanai H. Effects of N-3 Polyunsaturated Fatty Acids on Dementia. J. Clin. Med. Res. 2017;9:1–9. doi: 10.14740/jocmr2815w. PubMed DOI PMC
Giacobbe J., Benoiton B., Zunszain P., Pariante C.M., Borsini A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front. Psychiatry. 2020;11:122. doi: 10.3389/fpsyt.2020.00122. PubMed DOI PMC
Wang X., Hjorth E., Vedin I., Eriksdotter M., Freund-Levi Y., Wahlund L.O., Cederholm T., Palmblad J., Schultzberg M. Effects of N-3 FA Supplementation on the Release of Proresolving Lipid Mediators by Blood Mononuclear Cells: The OmegAD Study. J. Lipid Res. 2015;56:674–681. doi: 10.1194/jlr.P055418. PubMed DOI PMC
Wang X., Zhu M., Hjorth E., Cortés-Toro V., Eyjolfsdottir H., Graff C., Nennesmo I., Palmblad J., Eriksdotter M., Sambamurti K., et al. Resolution of Inflammation Is Altered in Alzheimer’s Disease. Alzheimer’s Dement. 2015;11:40–50. doi: 10.1016/j.jalz.2013.12.024. PubMed DOI PMC
Faxén-Irving G., Freund-Levi Y., Eriksdotter-Jönhagen M., Basun H., Hjorth E., Palmblad J., Vedin I., Cederholm T., Wahlund L.O. Effects on Transthyretin in Plasma and Cerebrospinal Fluid by DHA-Rich n − 3 Fatty Acid Supplementation in Patients with Alzheimer’s Disease: The OmegAD Study. J. Alzheimer’s Dis. 2013;36:1–6. doi: 10.3233/JAD-121828. PubMed DOI
Grimm M.O.W., Kuchenbecker J., Grosgen S., Burg V.K., Hundsdorfer B., Rothhaar T.L., Friess P., De Wilde M.C., Broersen L.M., Penke B., et al. Docosahexaenoic Acid Reduces Amyloid Beta Production via Multiple Pleiotropic Mechanisms. J. Biol. Chem. 2011;286:14028–14039. doi: 10.1074/jbc.M110.182329. PubMed DOI PMC
Hjorth E., Zhu M., Toro V.C., Vedin I., Palmblad J., Cederholm T., Freund-Levi Y., Faxen-Irving G., Wahlund L.O., Basun H., et al. Omega-3 Fatty Acids Enhance Phagocytosis of Alzheimer’s Disease-Related Amyloid-Β42 by Human Microglia and Decrease Inflammatory Markers. J. Alzheimer’s Dis. 2013;35:697–713. doi: 10.3233/JAD-130131. PubMed DOI
Tully A.M., Roche H.M., Doyle R., Fallon C., Bruce I., Lawlor B., Coakley D., Gibney M.J. Low Serum Cholesteryl Ester-Docosahexaenoic Acid Levels in Alzheimer’s Disease: A Case–Control Study. Br. J. Nutr. 2003;89:483–489. doi: 10.1079/BJN2002804. PubMed DOI
Chu C.S., Hung C.F., Ponnusamy V.K., Chen K.C., Chen N.C. Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimers Disease: Two-Year Follow-Up. Nutrients. 2022;14:1159. doi: 10.3390/nu14061159. PubMed DOI PMC
Sala-Vila A., Satizabal C.L., Tintle N., Melo van Lent D., Vasan R.S., Beiser A.S., Seshadri S., Harris W.S. Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer´s Disease and All-Cause Dementia: Framingham Offspring Study. Nutrients. 2022;14:2408. doi: 10.3390/nu14122408. PubMed DOI PMC
Schaefer E.J., Bongard V., Beiser A.S., Lamon-Fava S., Robins S.J., Au R., Tucker K.L., Kyle D.J., Wilson P.W.F., Wolf P.A. Plasma Phosphatidylcholine Docosahexaenoic Acid Content and Risk of Dementia and Alzheimer Disease: The Framingham Heart Study. Arch. Neurol. 2006;63:1545–1550. doi: 10.1001/archneur.63.11.1545. PubMed DOI
Kröger E., Verreault R., Carmichael P.H., Lindsay J., Julien P., Dewailly É., Ayotte P., Laurin D. Omega-3 Fatty Acids and Risk of Dementia: The Canadian Study of Health and Aging. Am. J. Clin. Nutr. 2009;90:184–192. doi: 10.3945/ajcn.2008.26987. PubMed DOI
Laurin D., Verreault R., Lindsay J., Dewailly É., Holub B.J. Omega-3 Fatty Acids and Risk of Cognitive Impairment and Dementia. J. Alzheimer’s Dis. 2003;5:315–322. doi: 10.3233/JAD-2003-5407. PubMed DOI
Wood A.H.R., Chappell H.F., Zulyniak M.A. Dietary and Supplemental Long-Chain Omega-3 Fatty Acids as Moderators of Cognitive Impairment and Alzheimer’s Disease. Eur. J. Nutr. 2022;61:589–604. doi: 10.1007/s00394-021-02655-4. PubMed DOI PMC
Araya-Quintanilla F., Gutiérrez-Espinoza H., Sánchez-Montoya U., Muñoz-Yañez M.J., Baeza-Vergara A., Petersen-Yanjarí M., Fernández-Lecaros L. Effectiveness of Omega-3 Fatty Acid Supplementation in Patients with Alzheimer Disease: A Systematic Review and Meta-Analysis. Neurología (Engl. Ed.) 2020;35:105–114. doi: 10.1016/j.nrleng.2017.07.014. PubMed DOI
Chiu C.C., Su K.P., Cheng T.C., Liu H.C., Chang C.J., Dewey M.E., Stewart R., Huang S.Y. The Effects of Omega-3 Fatty Acids Monotherapy in Alzheimer’s Disease and Mild Cognitive Impairment: A Preliminary Randomized Double-Blind Placebo-Controlled Study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2008;32:1538–1544. doi: 10.1016/j.pnpbp.2008.05.015. PubMed DOI
Freund-Levi Y., Eriksdotter-Jönhagen M., Cederholm T., Basun H., Faxén-Irving G., Garlind A., Vedin I., Vessby B., Wahlund L.O., Palmblad J. Omega-3 Fatty Acid Treatment in 174 Patients with Mild to Moderate Alzheimer Disease: OmegAD Study: A Randomized Double-Blind Trial. Arch. Neurol. 2006;63:1402–1408. doi: 10.1001/archneur.63.10.1402. PubMed DOI
Andrieu S., Guyonnet S., Coley N., Cantet C., Bonnefoy M., Bordes S., Bories L., Cufi M.N., Dantoine T., Dartigues J.F., et al. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Intervention on Cognitive Function in Elderly Adults with Memory Complaints (MAPT): A Randomised, Placebo-Controlled Trial. Lancet Neurol. 2017;16:377–389. doi: 10.1016/S1474-4422(17)30040-6. PubMed DOI
Hooper C., de Souto Barreto P., Coley N., Cantet C., Cesari M., Andrieu S., Vellas B. Cognitive Changes with Omega-3 Polyunsaturated Fatty Acids in Non-Demented Older Adults with Low Omega-3 Index. J. Nutr. Health Aging. 2017;21:988–993. doi: 10.1007/s12603-017-0957-5. PubMed DOI
Beezhold B.L., Johnston C.S., Daigle D.R. Vegetarian diets are associated with healthy mood states: A cross-sectional study in Seventh Day Adventist adults. Nutr. J. 2010;9:26. doi: 10.1186/1475-2891-9-26. PubMed DOI PMC
Lin M.-N., Chiu T.H., Chang C.-E., Lin M.-N. The Impact of a Plant-based Dietary Pattern on Dementia Risk: A Prospective Cohort Study. Innov. Aging. 2019;3:S734. doi: 10.1093/geroni/igz038.2691. DOI
Brasky T.M., Darke A.K., Song X., Tangen C.M., Goodman P.J., Thompson I.M., Meyskens F.L., Goodman G.E., Minasian L.M., Parnes H.L., et al. Plasma Phospholipid Fatty Acids and Prostate Cancer Risk in the SELECT Trial. J. Natl. Cancer Inst. 2013;105:1132–1141. doi: 10.1093/jnci/djt174. PubMed DOI PMC