West-Life: A Virtual Research Environment for structural biology
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32647812
PubMed Central
PMC7337051
DOI
10.1016/j.yjsbx.2019.100006
PII: S2590-1524(19)30004-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cloud computing, Data management, Grid computing, Structural biology, Virtual Research Environment,
- Publikační typ
- časopisecké články MeSH
The West-Life project (https://about.west-life.eu/) is a Horizon 2020 project funded by the European Commission to provide data processing and data management services for the international community of structural biologists, and in particular to support integrative experimental approaches within the field of structural biology. It has developed enhancements to existing web services for structure solution and analysis, created new pipelines to link these services into more complex higher-level workflows, and added new data management facilities. Through this work it has striven to make the benefits of European e-Infrastructures more accessible to life-science researchers in general and structural biologists in particular.
Division of Biochemistry Netherlands Cancer Institute Amsterdam The Netherlands
European Molecular Biology Laboratory c o DESY Notkestr 85 22607 Hamburg Germany
European Molecular Biology Laboratory Cambridge UK
Magnetic Resonance Center University of Florence Italy
Masaryk University Czech Republic
National Center for Biotechnology Spain
Zobrazit více v PubMed
Hobor F., Dallmann A., Ball N.J., Cicchini C., Battistelli C., Ogrodowicz R.W., Christodoulou E., Martin S.R., Castello A., Tripodi M., Taylor I.A., Ramos A. A cryptic RNA-binding domain mediates syncrip recognition and exosomal partitioning of miRNA targets. Nat. Commun. 2018;9(1) doi: 10.1038/s41467-018-03182-3. PubMed DOI PMC
Ha B.H., Boggon T.J. The crystal structure of pseudokinase PEAK1 (sugen kinase 269) reveals an unusual catalytic cleft and a novel mode of kinase fold dimerization. J. Biol. Chem. 2017 doi: 10.1074/jbc.ra117.000751. jbc.RA117.000751+ PubMed DOI PMC
Long F., Vagin A.A., Young P., Murshudov G.N. IUCr, BALBES: a molecular-replacement pipeline. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2008;64(1):125–132. doi: 10.1107/s0907444907050172. PubMed DOI PMC
Morris C. Towards a structural biology work bench. Acta Crystallogr. Sect. D. 2013;69(5):681–682. doi: 10.1107/s090744491300276x. PubMed DOI PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., McNicholas S.J., Murshudov G.N., Pannu N.S., Potterton E.A., Powell H.R., Read R.J., Vagin A., Wilson K.S. IUCr, overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2011;67(4):235–242. doi: 10.1107/s0907444910045749. PubMed DOI PMC
Wassenaar T.A., van Dijk M., Loureiro-Ferreira N., van der Schot G., de Vries S.J., Schmitz C., van der Zwan J., Boelens R., Giachetti A., Ferella L., Rosato A., Bertini I., Herrmann T., Jonker H.R.A., Bagaria A., Jaravine V., Güntert P., Schwalbe H., Vranken W.F., Doreleijers J.F., Vriend G., Vuister G.W., Franke D., Kikhney A., Svergun D.I., Fogh R.H., Ionides J., Laue E.D., Spronk C., Jurkša S., Verlato M., Badoer S., Dal Pra S., Mazzucato M., Frizziero E., Bonvin A.M.J.J. WeNMR: structural biology on the grid. J. Grid Comput. 2012;10(4):743–767. doi: 10.1007/s10723-012-9246-z. DOI
Bertini I., Case D.A., Ferella L., Giachetti A., Rosato A. A grid-enabled web portal for NMR structure refinement with AMBER. Bioinformatics (Oxford, England) 2011;27(17):2384–2390. doi: 10.1093/bioinformatics/btr415. PubMed DOI
Verlato M., Andreetto P., Astalos J., Dobrucky M., Giachetti A., Rebatto D., Rosato A., Tran V., Zangrando L. Proceedings of International Symposium on Grids and Clouds (ISGC) 2017 – PoS(ISGC2017), Sissa Medialab. 2017. EGI federated platforms supporting accelerated computing. pp. 020+ DOI
Langer G., Cohen S.X., Lamzin V.S., Perrakis A. Automated macromolecular model building for x-ray crystallography using ARP/wARP version 7. Nat. Protoc. 2008;3(7):1171–1179. doi: 10.1038/nprot.2008.91. PubMed DOI PMC
van Zundert G.C.P., Trellet M., Schaarschmidt J., Kurkcuoglu Z., David M., Verlato M., Rosato A., Bonvin A.M.J.J. The DisVis and PowerFit web servers: explorative and integrative modeling of biomolecular complexes. J. Mol. Biol. 2017;429(3):399–407. doi: 10.1016/j.jmb.2016.11.032. PubMed DOI
Rinaldelli M., Ravera E., Calderone V., Parigi G., Murshudov G.N., Luchinat C. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. Acta Crystallogr. Sect. D. 2014;70(4):958–967. doi: 10.1107/s1399004713034160. PubMed DOI PMC
Vangone A., Rodrigues J.P., Xue L.C., van Zundert G.C., Geng C., Kurkcuoglu Z., Nellen M., Narasimhan S., Karaca E., van Dijk M., Melquiond A.S., Visscher K.M., Trellet M., Bonvin P.L., Kastritis A.M.J.J. Sense and simplicity in HADDOCK scoring: lessons from CASP-CAPRI round 1. Proteins: Struct. Funct. Bioinf. 2017;85(3):417–423. doi: 10.1002/prot.25198. PubMed DOI PMC
Spiliotopoulos D., Kastritis P.L., Melquiond A.S.J., Bonvin A.M.J.J., Musco G., Rocchia W., Spitaleri A. dMM-PBSA: a new HADDOCK scoring function for Protein-Peptide docking. Front. Mol. Biosci. 2016;3 doi: 10.3389/fmolb.2016.00046. PubMed DOI PMC
Putignano V., Rosato A., Banci L., Andreini C. MetalPDB in 2018: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 2018;46(D1) URL: http://view.ncbi.nlm.nih.gov/pubmed/29077942. PubMed PMC
Joosten R.P., Long F., Murshudov G.N., Perrakis A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1(4):213–220. doi: 10.1107/s2052252514009324. PubMed DOI PMC
Mooij W.T.M., Mitsiki E., Perrakis A. ProteinCCD: enabling the design of protein truncation constructs for expression and crystallization experiments. Nucleic Acids Res. 37 (Web Server) 2009;W402–W405 doi: 10.1093/nar/gkp256. PubMed DOI PMC
Conesa Mingo P., Gutierrez J., Quintana A., de la Rosa Trevín J.M., Zaldívar-Peraza A., Cuenca Alba J., Kazemi M., Vargas J., del Cano L., Segura J., Sorzano C.O., Carazo J.M. Scipion web tools: easy to use cryo-EM image processing over the web. Protein Sci. 2017 doi: 10.1002/pro.3315. PubMed DOI PMC
Cuenca-Alba J., del Cano L., Gómez Blanco J., de la Rosa Trevín J.M., Conesa Mingo P., Marabini R., Sorzano C.O., Carazo J.M. ScipionCloud: an integrative and interactive gateway for large scale cryo electron microscopy image processing on commercial and academic clouds. J. Struct. Biol. 2017;200(1):20–27. doi: 10.1016/j.jsb.2017.06.004. PubMed DOI
Moreira I.S., Koukos P.I., Melo R., Almeida J.G., Preto A.J., Schaarschmidt J., Trellet M., Gümüş Z.H., Costa J., Bonvin A.M.J.J. SpotOn: high accuracy identification of protein-protein interface Hot-Spots. Scientific Rep. 2017;7(1) doi: 10.1038/s41598-017-08321-2. PubMed DOI PMC
Xue L.C., Rodrigues J.a.P.P., Kastritis P.L., Bonvin A.M.M., Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford England) 2016;32(23):3676–3678. doi: 10.1093/bioinformatics/btw514. PubMed DOI
Vangone A., Schaarschmidt J., Koukos P., Geng C., Citro N., Trellet M.E., Xue L.C., Bonvin A.M.J.J. Large-scale prediction of binding affinity in protein-small ligand complexes: the PRODIGY-LIG web server. Bioinformatics. 2018 doi: 10.1093/bioinformatics/bty816. PubMed DOI
Segura J., Sanchez-Garcia R., Martinez M., Cuenca-Alba J., Tabas-Madrid D., Sorzano C.O.S., Carazo J.M. 3DBIONOTES v2. 0: a web server for the automatic annotation of macromolecular structures. Bioinformatics. 2017;33(22):3655–3657. doi: 10.1093/bioinformatics/btx483. PubMed DOI PMC
Pereira J., Lamzin V.S. A distance geometry-based description and validation of protein main-chain conformation. IUCrJ. 2017;4(5):657–670. doi: 10.1107/s2052252517008466. PubMed DOI PMC
Lensink M.F., Velankar S., Wodak S.J. Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins Struct. Function Bioinf. 2017;85(3):359–377. doi: 10.1002/prot.25215. PubMed DOI
van Zundert Bonvin. Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit. AIMS Biophys. 2015;2(2):73–87. doi: 10.3934/biophy.2015.2.73. DOI
van Zundert G.C.P., Melquiond A.S.J., Bonvin A.M.J.J. Integrative modeling of biomolecular complexes: HADDOCKing with Cryo-Electron microscopy data. Structure. 2015;23(5):949–960. doi: 10.1016/j.str.2015.03.014. PubMed DOI
Berman H.M. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
van Beusekom B., Touw W.G., Tatineni M., Somani S., Rajagopal G., Luo J., Gilliland G.L., Perrakis A., Joosten R.P. Homology-based hydrogen bond information improves crystallographic structures in the PDB. Protein Sci. 2018;27(3):798–808. doi: 10.1002/pro.3353. PubMed DOI PMC
Murshudov G.N., Skubák P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. IUCr, REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect D: Biol. Crystallogr. 2011;67(4):355–367. doi: 10.1107/s0907444911001314. PubMed DOI PMC
Vangone A., Bonvin A.M.J.J. Contacts-based prediction of binding affinity in protein-protein complexes. eLife. 2015 URL: https://elifesciences.org/articles/07454. PubMed PMC
Wodak S.J., Janin J. Modeling protein assemblies: critical assessment of predicted interactions (CAPRI) 15 years hence. Proteins: Struct. Funct. Bioinf. 2017;85(3):357–358. doi: 10.1002/prot.25233. PubMed DOI
van Zundert G.C.P., Bonvin A.M.J.J. Defining the limits and reliability of rigid-body fitting in cryo-EM maps using multi-scale image pyramids. J. Struct. Biol. 2016;195(2):252–258. doi: 10.1016/j.jsb.2016.06.011. PubMed DOI
Kurkcuoglu Z., Koukos P., Citro N., Trellet M., Rodrigues, Moreira I., Roel-Touris J., Melquiond A., Geng C., Schaarschmidt J., Xue L., Vangone A., Bonvin A.M.J.J. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R grand challenge 2. J. Comput. Aided Mol. Des. 2018;32(1):175–185. doi: 10.1007/s10822-017-0049-y. PubMed DOI PMC
Keegan R.M., McNicholas S.J., Thomas J.M.H., Simpkin A.J., Simkovic F., Uski V., Ballard C.C., Winn M.D., Wilson K.S., Rigden D.J. IUCr, Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment. Acta Crystallogr. Sect. D: Struct. Biol. 2018;74(3):167–182. doi: 10.1107/s2059798318003455. PubMed DOI PMC
Vagin A., Lebedev A. IUCr, MoRDa an automatic molecular replacement pipeline. Acta Crystallogr. Sect. A: Found. Adv. 2015;71 doi: 10.1107/s2053273315099672. DOI
Sehnal D., Deshpande M., Vařeková R.S., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koča J. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017;14(12):1121–1122. doi: 10.1038/nmeth.4499. PubMed DOI
Salomoni D., Campos I., Gaido L., de Lucas J.M., Solagna P., Gomes J., Matyska L., Fuhrman P., Hardt M., Donvito G., Dutka L., Plociennik M., Barbera R., Blanquer I., Ceccanti A., Cetinic E., David M., Duma C., López-García A., Moltó G., Orviz P., Sustr Z., Viljoen M., Aguilar F., Alves L., Antonacci M., Antonelli L.A., Bagnasco S., Bonvin A.M.J.J., Bruno R., Chen Y., Costa A., Davidovic D., Ertl B., Fargetta M., Fiore S., Gallozzi S., Kurkcuoglu Z., Lloret L., Martins J., Nuzzo A., Nassisi P., Palazzo C., Pina J., Sciacca E., Spiga D., Tangaro M., Urbaniak M., Vallero S., Wegh B., Zaccolo V., Zambelli F., Zok T. INDIGO-DataCloud: a platform to facilitate seamless access to E-Infrastructures. J. Grid Comput. 2018;16(3):381–408. doi: 10.1007/s10723-018-9453-3. DOI
Crystallography: Protein data bank, 1971. Nat. New Biol. 233 (42), 223. https://doi.org/10.1038/newbio233223b0. DOI
Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. The protein data bank. A Computer-Based archival file for macromolecular structures. Eur. J. Biochem. 1977;80(2):319–324. doi: 10.1111/j.1432-1033.1977.tb11885.x. PubMed DOI
Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.-W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Groth P., Goble C., Grethe J.S., Heringa J., ’t Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.-A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M.A., Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J., Mons B. The FAIR guiding principles for scientific data management and stewardship. Scientific Data. 2016;3:160018+. doi: 10.1038/sdata.2016.18. PubMed DOI PMC