TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32663247
PubMed Central
PMC7755421
DOI
10.1093/bioinformatics/btaa632
PII: 5871348
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- molekulární evoluce MeSH
- retroelementy * genetika MeSH
- software * MeSH
- transpozibilní elementy DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy * MeSH
- transpozibilní elementy DNA MeSH
MOTIVATION: Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements and the order in which they have been inserted is important for genome and transposon evolution studies. However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs. RESULTS: We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of natural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions. AVAILABILITY AND IMPLEMENTATION: http://gitlab.fi.muni.cz/lexa/nested. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Zobrazit více v PubMed
Ahmed M., Liang P. (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp. Funct. Genomics, 199, 1–7. PubMed PMC
Altschul S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410. PubMed
Bergman C.M., Quesneville H. (2007) Discovering and detecting transposable elements in genome sequences. Brief. Bioinform., 8, 382–392. PubMed
Civan P. et al. (2011) On the coevolution of transposable elements and plant genomes. J. Bot., 2011, 893546.
Cossu R.M. et al. (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet. Genomes, 8, 61–75.
Du J. et al. (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics, 11, 113. PubMed PMC
Ellinghaus D. et al. (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9, 18. PubMed PMC
Fedoroff N.V. (2012) Presidential address. Transposable elements, epigenetics, and genome evolution. Science, 338, 758–767. PubMed
Gao C. et al. (2012) Characterization and functional annotation of nested transposable elements in eukaryotic genomes. Genomics, 100, 222–230. PubMed
Goerner-Potvin P., Bourque G. (2018) Computational tools to unmask transposable elements. Nat. Rev. Genet., 19, 688–704. PubMed
Goodstein D.M. et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res., 40, D1178–1186. PubMed PMC
Gremme G. et al. (2013) GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 645–656. PubMed
Hirochika H. (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol., 35, 231–240. PubMed
Holligan D. et al. (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics, 174, 2215–2228. PubMed PMC
Hribova E. et al. (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol., 10, 204. PubMed PMC
Jiang S.-Y., Ramachandran S. (2013) Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS One, 8, e71118. PubMed PMC
Kapitonov V.V., Jurka J. (1999) Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica, 107, 27–37. PubMed
Kronmiller B.A., Wise R.P. (2008) TEnest: automated chronological annotation and visualization of nested plant transposable elements. Plant Physiol., 146, 45–59. PubMed PMC
Kronmiller B.A., Wise R.P. (2013) TEnest 2.0: computational annotation and visualization of nested transposable elements. Methods Mol. Biol., 1057, 305–319. PubMed
Lang D. et al. (2018) The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J., 93, 515–533. PubMed
Li X. et al. (2008) A novel genome-scale repeat finder geared towards transposons. Bioinformatics, 24, 468–476. PubMed
Li F.W. et al. (2018) Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants, 4, 460–472. PubMed PMC
McCarthy E.M., McDonald J.F. (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics, 19, 362–367. PubMed
Nussbaumer T. et al. (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res., 41, D1144–D1151. PubMed PMC
Ou S., Jiang N. (2018) LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol., 176, 1410–1422. PubMed PMC
Pereira V. (2008) Automated paleontology of repetitive DNA with REannotate. BMC Genomics, 9, 614. PubMed PMC
Peterson-Burch B.D. et al. (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol., 5, R78. PubMed PMC
Quinlan A.R., Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842. PubMed PMC
Rice P. et al. (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet., 16, 276–277. PubMed
Robinson J.T. et al. (2011) Integrative genomics viewer. Nat. Biotechnol., 29, 24–26. PubMed PMC
Saha S. et al. (2008) Computational approaches and tools used in identification of dispersed repetitive DNA sequences. Trop. Plant Biol., 1, 85–96.
SanMiguel P. et al. (1998) The paleontology of intergene retrotransposons of maize. Nat. Genet., 20, 43–45. PubMed
Smit A.F. (1999) Interspersed repeats and other mementos of transposable elements in mammalian genome. Curr. Opin. Genet. Dev., 9, 657–663. PubMed
Stitzer M.C. et al. (2019) The genomic ecosystem of transposable elements in maize. 559922, 1–48.doi: 10.1101/559922. PubMed DOI PMC
Stritt C. et al. (2019) Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon. N. Phytol, 10.1111/nph.16308, 1–13. PubMed PMC
Thorvaldsdottir H. et al. (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform., 14, 178–192. PubMed PMC
Valencia J.D., Girgis H.Z. (2019) LtrDetector: a modern tool-suite for detecting long terminal repeat retrotransposons de-novo on the genomic scale. BMC Genomics, 20, 450. PubMed PMC
Vanburen R. et al. (2018) Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla. Nat. Commun., 9, 8. PubMed PMC
Vicient C.M., Casacuberta J.M. (2017) Impact of transposable elements on polyploid plant genomes. Ann. Bot. Lond., 120, 195–207. PubMed PMC
Wang H., Liu J.S. (2008) LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics, 9, 382–382. PubMed PMC
Xu Y., Du J. (2014) Young but not relatively old retrotransposons are preferentially located in gene-rich euchromatic regions in tomato (Solanum lycopersicum) plants. Plant J., 80, 582–591. PubMed
Xu Z. et al. (2017) GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii). Database, 2017, 1–7. PubMed PMC
Xu Z., Wang H. (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res., 35, W265–268. PubMed PMC
Zeng F. et al. (2017) LTRtype, an efficient tool to characterize structurally complex LTR retrotransposons and nested insertions on genomes. Front. Plant Sci., 8, 402. PubMed PMC
Sexy ways: approaches to studying plant sex chromosomes