Towards Accurate Predictions of Proton NMR Spectroscopic Parameters in Molecular Solids
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
20-01472S
Czech Science Foundation
Ministry of Education, Youth and Sports of the Czech Republic
LO1504
National Sustainability Program I
- Keywords
- NMR spectroscopy, amino acids, density functional calculations, molecular dynamics, solid state,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The factors contributing to the accuracy of quantum-chemical calculations for the prediction of proton NMR chemical shifts in molecular solids are systematically investigated. Proton chemical shifts of six solid amino acids with hydrogen atoms in various bonding environments (CH, CH2 , CH3 , OH, SH and NH3 ) were determined experimentally using ultra-fast magic-angle spinning and proton-detected 2D NMR experiments. The standard DFT method commonly used for the calculations of NMR parameters of solids is shown to provide chemical shifts that deviate from experiment by up to 1.5 ppm. The effects of the computational level (hybrid DFT functional, coupled-cluster calculation, inclusion of relativistic spin-orbit coupling) are thoroughly discussed. The effect of molecular dynamics and nuclear quantum effects are investigated using path-integral molecular dynamics (PIMD) simulations. It is demonstrated that the accuracy of the calculated proton chemical shifts is significantly better when these effects are included in the calculations.
See more in PubMed
A. D. Bond, CrystEngComm 2012, 14, 2363-2366.
P. Hodgkinson, Prog. Nucl. Magn. Reson. Spectrosc. 2020, 118-119, 10-53.
C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 6324, 245101;
C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azais, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 2012, 112, 5733-5779;
S. E. Ashbrook, D. McKay, Chem. Commun. 2016, 52, 7186-7204;
T. Charpentier, Solid State Nucl. Magn. Reson. 2011, 40, 1-20.
M. Baias, C. M. Widdifield, J. N. Dumez, H. P. G. Thompson, T. G. Cooper, E. Salager, S. Bassil, R. S. Stein, A. Lesage, G. M. Day, L. Emsley, Phys. Chem. Chem. Phys. 2013, 15, 8069-8080;
M. Baias, J. N. Dumez, P. H. Svensson, S. Schantz, G. M. Day, L. Emsley, J. Am. Chem. Soc. 2013, 135, 17501-17507;
J. K. Harper, D. M. Grant, Cryst. Growth Des. 2006, 6, 2315-2321;
C. M. Widdifield, S. O. N. Lill, A. Broo, M. Lindkvist, A. Pettersen, A. S. Ankarberg, P. Aldred, S. Schantz, L. Emsley, Phys. Chem. Chem. Phys. 2017, 19, 16650-16661.
P. Florian, D. Massiot, CrystEngComm 2013, 15, 8623-8626;
M. Dračínský, P. Hodgkinson, RSC Adv 2015, 5, 12300-12310.
E. L. Buckle, J. S. Lum, A. M. Roehrich, R. E. Stote, B. Vandermoon, M. Dracinsky, S. F. Filocamo, G. P. Drobny, J. Phys. Chem. B 2018, 122, 4708-4718;
A. Roehrich, G. Drobny, Acc. Chem. Res. 2013, 46, 2136-2136.
E. Salager, G. M. Day, R. S. Stein, C. J. Pickard, B. Elena, L. Emsley, J. Am. Chem. Soc. 2010, 132, 2564;
E. Salager, R. S. Stein, C. J. Pickard, B. Elena, L. Emsley, Phys. Chem. Chem. Phys. 2009, 11, 2610-2621;
E. A. Engel, A. Anelli, A. Hofstetter, F. Paruzzo, L. Emsley, M. Ceriotti, Phys. Chem. Chem. Phys. 2019, 21, 23385-23400;
A. Hofstetter, M. Balodis, F. M. Paruzzo, C. M. Widdifield, G. Steyanato, A. C. Pinon, P. J. Bygrave, G. M. Day, L. Emsley, J. Am. Chem. Soc. 2019, 141, 16624-16634;
C. M. Widdifield, H. Robson, P. Hodgkinson, Chem. Commun. 2016, 52, 6685-6688.
R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York 1965.
M. Dračínský, P. Hodgkinson, Chem. Eur. J. 2014, 20, 2201-2207;
M. Dračínský, P. Bouř, P. Hodgkinson, J. Chem. Theory Comput. 2016, 12, 968-973;
M. Dračínský, L. Čechová, P. Hodgkinson, E. Procházková, Z. Janeba, Chem. Commun. 2015, 51, 13986-13989;
K. Bártová, L. Čechová, E. Procházková, O. Socha, Z. Janeba, M. Dračínský, J. Org. Chem. 2017, 82, 10350-10359.
J. D. Hartman, R. A. Kudla, G. M. Day, L. J. Mueller, G. J. O. Beran, Phys. Chem. Chem. Phys. 2016, 18, 21686-21709;
J. D. Hartman, G. M. Day, G. J. O. Beran, Cryst. Growth Des. 2016, 16, 6479-6493;
J. D. Hartman, A. Balaji, G. J. O. Beran, J. Chem. Theory Comput. 2017, 13, 6043-6051;
J. D. Hartman, G. J. O. Beran, Solid State Nucl. Mag. 2018, 96, 10-18;
O. Socha, P. Hodgkinson, C. M. Widdifield, J. R. Yates, M. Dračínský, J. Phys. Chem. A 2017, 121, 4103-4113;
M. Dračínský, P. Unzueta, G. J. O. Beran, Phys. Chem. Chem. Phys. 2019, 21, 14992-15000.
T. Kobayashi, Y. Nishiyama, M. Pruski, Modern Methods in Solid-state NMR - A practitioner‘s guide (Ed.: P. Hodgkinson), The Royal Society of Chemistry, Cambridge 2018;
K. Bártová, I. Císařová, A. Lyčka, M. Dračínský, Dyes Pigments 2020, 178, 108342.
K. A. Kerr, J. P. Ashmore, T. F. Koetzle, Acta Cryst. B 1975, 31, 2022-2026;
B. A. Kolesov, V. S. Minkov, E. V. Boldyreva, T. N. Drebushchak, J. Phys. Chem. B 2008, 112, 12827-12839;
S. A. Moggach, S. J. Clark, S. Parsons, Acta Crystallogr E 2005, 61, O2739-O2742.
H. E. Kerr, H. E. Mason, H. A. Sparkes, P. Hodgkinson, CrystEngComm 2016, 18, 6700-6707.
J. Autschbach, T. Ziegler, Encyclopedia of NMR (Ed.: R. K. Harris), John Wiley & Sons, Ltd, Chichester 2012.
A. H. Greif, P. Hrobárik, J. Autschbach, M. Kaupp, Phys. Chem. Chem. Phys. 2016, 18, 30462-30474;
L. A. Seaman, P. Hrobárik, M. F. Schettini, S. Fortier, M. Kaupp, T. W. Hayton, Angew. Chem. Int. Ed. 2013, 52, 3259-3263;
P. Hrobarik, V. Hrobarikova, A. H. Greif, M. Kaupp, Angew. Chem. Int. Ed. 2012, 51, 10884-10888;
J. Vícha, R. Marek, M. Straka, Inorg. Chem. 2016, 55, 1770-1781;
J. Vícha, R. Marek, M. Straka, Inorg. Chem. 2016, 55, 10302-10309.
J. Autschbach, S. Zheng, Annu. Rep. NMR Spectrosc. 2009, 67, 1-95;
J. Vícha, J. Novotný, S. Komorovsky, M. Straka, M. Kaupp, R. Marek, Chem. Rev. 2020, in press, DOI: 10.1021/acs.chemrev.9b00785;
M. Kaupp, Theoretical and Computational Chemistry (Ed.: P. Schwerdtfeger), Elsevier 2004, pp. 552-597.
S. Standara, K. Maliňáková, R. Marek, J. Marek, M. Hocek, J. Vaara, M. Straka, Phys. Chem. Chem. Phys. 2010, 12, 5126-5139.
P. Lantto, J. Vaara, A. M. Kantola, V. V. Telkki, B. Schimmelpfennig, K. Ruud, J. Jokisaari, J. Am. Chem. Soc. 2002, 124, 2762-2771.
Y. Y. Rusakov, I. L. Rusakova, Magn. Reson. Chem. 2018, 56, 716-726.
J. Vícha, P. Švec, Z. Růžičková, M. A. Samsonov, K. Bártová, A. Růžička, M. Straka, M. Dračínský, Chem. Eur. J. 2020, 26, 8698-8702.
D. D. Koelling, B. N. Harmon, J. Phys. C Solid St. Phys. 1977, 10, 3107-3114.
Ł. Szeleszczuk, D. M. Pisklak, M. Zielińska-Pisklak, J. Comput. Chem. 2018, 39, 853-861.
A. Brinkmann, A. P. M. Kentgens, J. Am. Chem. Soc. 2006, 128, 14758-14759.
F. H. Allen, Acta Cryst. B 2002, 58, 380-388.
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567-570.
M. Dračínský, P. Hodgkinson, CrystEngComm 2013, 15, 8705-8712.
J. Vícha, M. Patzschke, R. Marek, Phys. Chem. Chem. Phys. 2013, 15, 7740-7754.
S. T. Holmes, R. J. Iuliucci, K. T. Mueller, C. Dybowski, J. Chem. Phys. 2017, 146;
S. T. Holmes, R. W. Schurko, J. Phys. Chem. C 2018, 122, 1809-1820.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192.
J. R. Yates, C. J. Pickard, F. Mauri, Phys. Rev. B 2007, 76, 024401.
D. Vanderbilt, Phys. Rev. B 1990, 41, 7892-7895.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, X. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
C. Møller, M. S. Plesset, Phys Rev 1934, 46, 618-622.
R. J. Bartlett, G. D. Purvis, Int. J. Quantum Chem. 1978, 14, 561-581;
J. Čížek, Advances in Chemical Physics, Volume 14 (Eds.: R. LeFebvre, C. Moser), John Wiley & Sons, Ltd., London 1969, pp. 35-89;
G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910-1918;
G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382-7387.
A. A. Auer, J. Gauss, J. Chem. Phys. 2001, 115, 1619-1622;
CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package, J. F. Stanton, J. Gauss, L. Cheng, M. E. Harding, D. A. Matthews, P. G. Szalay, with contributions from: A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, K. Klein, W. J. Lauderdale, F. Lipparini, T. Metzroth, L. A. Mück, D. P. O'Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, and the integral packages MOLECULE (J. Almlöf, P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen), and ECP routines by A. V. Mitin, C. van Wüllen. For the current version, see http://www.cfour.de.
E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783-9792;
E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597-4610.
S. ADF 2018, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://sww.scm.com.
J. Autschbach, Mol. Phys. 2013, 111, 2544-2554;
J. Vicha, J. Novotny, M. Straka, M. Repisky, K. Ruud, S. Komorovsky, R. Marek, Phys. Chem. Chem. Phys. 2015, 17, 24944-24955.
Analyzing Discrepancies in Chemical-Shift Predictions of Solid Pyridinium Fumarates