Liver macrophages regulate systemic metabolism through non-inflammatory factors

. 2019 Apr ; 1 (4) : 445-459. [epub] 20190325

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32694874

Odkazy
PubMed 32694874
DOI 10.1038/s42255-019-0044-9
PII: 10.1038/s42255-019-0044-9
Knihovny.cz E-zdroje

Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.

Bioscience Cardiovascular Renal and Metabolism IMED Biotech Unit AstraZeneca Gothenburg Sweden

Center for Infectious Medicine Department of Medicine Huddinge Karolinska Institutet Karolinska University Hospital Stockholm Sweden

Department of Laboratory Medicine Clinical Research Center Karolinska Institutet Huddinge Sweden

Department of Microbiology Tumor and Cell Biology Science for Life Laboratory Karolinska Institutet Stockholm Sweden

Department of Molecular Endocrinology KMEB University of Southern Denmark Odense University Hospital and Danish Diabetes Academy Odense Denmark

Department of Molecular Mechanisms of Disease University of Zurich Zurich Switzerland

Division of Surgery Department of Clinical Sciences Danderyd Hospital Karolinska Institutet Stockholm Sweden

Division of Transplantation Surgery CLINTEC Karolinska Institutet Huddinge Sweden

Faculty of Science University of South Bohemia and Institute of Entomology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic

Integrated Cardio Metabolic Center Department of Medicine Karolinska Institutet Huddinge Sweden

Laboratory of Evolutionary Protistology Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic

Metabolism Unit C2 94 Department of Medicine and Center for Innovative Medicine Department of Biosciences and Nutrition Karolinska Institutet Huddinge Stockholm Sweden

Section of Pharmacogenetics Department of Physiology and Pharmacology Karolinska Institutet Solna Sweden

Translational Sciences Cardiovascular Renal and Metabolic Diseases IMED Biotech Unit AstraZeneca Gothenburg Sweden

Unit of Endocrinology Department of Medicine Karolinska Institutet Huddinge Sweden

Université Nice Côte d'Azur INSERM U1065 C3M Team Cellular and Molecular Physiopathology of Obesity Nice France

Wallenberg Centre for Molecular and Translational Medicine Lundberg Laboratory for Diabetes Research University of Gothenburg Gothenburg Sweden

Erratum v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Moore, M. C., Coate, K. C., Winnick, J. J., An, Z. & Cherrington, A. D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr.3, 286–294 (2012). DOI

Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol.13, 572–587 (2017). DOI

Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol.12, 15–28 (2016). DOI

Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology52, 1836–1846 (2010). DOI

Jager, J., Aparicio-Vergara, M. & Aouadi, M. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J. Intern. Med.280, 209–220 (2016). DOI

Esser, N., Paquot, N. & Scheen, A. J. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin. Investig. Drugs24, 283–307 (2015). DOI

Pollack, R. M., Donath, M. Y., LeRoith, D. & Leibowitz, G. Anti-inflammatory agents in the treatment of diabetes and Its vascular complications. Diabetes Care39(Suppl. 2), S244–S252 (2016). DOI

Everett, B. M. et al. Anti-Inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol.71, 2392–2401 (2018). DOI

Chen, L. et al. Selective depletion of hepatic Kupffer cells significantly alleviated hepatosteatosis and intrahepatic inflammation induced by high fat diet. Hepatogastroenterology59, 1208–1212 (2012).

Clementi, A. H., Gaudy, A. M., van Rooijen, N., Pierce, R. H. & Mooney, R. A. Loss of Kupffer cells in diet-induced obesity is associated with increased hepatic steatosis, STAT3 signaling, and further decreases in insulin signaling. Biochim. Biophys. Acta1792, 1062–1072 (2009). DOI

Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol.298, G107–G116 (2010). DOI

Papackova, Z. et al. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutr. Metab.9, 22 (2012). DOI

Stienstra, R. et al. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology51, 511–522 (2010). DOI

Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell33, 47–55 (2015). DOI

Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell33, 36–46 (2015). DOI

Evdokimova, V. et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci. Signal.5, ra92 (2012). DOI

Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab.20, 614–625 (2014). DOI

Hardy, O. T. et al. Body mass index–independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg. Obes. Relat. Dis.7, 60–67 (2011). DOI

Haukeland, J. W. et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol.44, 1167–1174 (2006). DOI

Ahrens, M. et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab.18, 296–302 (2013). DOI

Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA111, 15538–15543 (2014). DOI

Morinaga, H. et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes64, 1120–1130 (2015). DOI

Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature458, 1180–1184 (2009). DOI

Tesz, G. J. et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem. J.436, 351–362 (2011). DOI

Tencerova, M. et al. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J.29, 2959–2969 (2015). DOI

Wan, F. & Lenardo, M. J. The nuclear signaling of NF-κB: current knowledge, new insights, and future perspectives. Cell Res.20, 24–33 (2010). DOI

Fang, B. et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell159, 1140–1152 (2014). DOI

Aparicio-Vergara, M., Tencerova, M., Morgantini, C., Barreby, E. & Aouadi, M. Isolation of Kupffer cells and hepatocytes from a single mouse liver. Methods Mol. Biol.1639, 161–171 (2017). DOI

Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes59, 347–357 (2010). DOI

Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature542, 352–356 (2017). DOI

Scott, C. L. et al. Bone marrow–derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun.7, 10321 (2016). DOI

Levanon, E. Y. et al. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res.33, 1162–1168 (2005). DOI

Godfried Sie, C., Hesler, S., Maas, S. & Kuchka, M. IGFBP7’s susceptibility to proteolysis is altered by A-to-I RNA editing of its transcript. FEBS Lett.586, 2313–2317 (2012). DOI

Ahmed, S. et al. Proteolytic processing of IGFBP-related protein-1 (TAF/angiomodulin/mac25) modulates its biological activity. Biochem. Biophys. Res. Commun.310, 612–618 (2003). DOI

Bader, R. et al. The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain. J. Cell Sci.126, 2571–2576 (2013).

Jiao, P., Feng, B., Li, Y., He, Q. & Xu, H. Hepatic ERK activity plays a role in energy metabolism. Mol. Cell Endocrinol.375, 157–166 (2013). DOI

Han, M. S. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science339, 218–222 (2013). DOI

Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med.11, 183–190 (2005). DOI

Obstfeld, A. E. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes59, 916–925 (2010). DOI

Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med.11, 191–198 (2005). DOI

Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab.7, 496–507 (2008). DOI

Lanthier, N. et al. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. FASEB J.25, 4301–4311 (2011). DOI

Honegger, B. et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol.7, 10 (2008). DOI

Ussar, S., Bezy, O., Bluher, M. & Kahn, C. R. Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine. Diabetes61, 2289–2298 (2012). DOI

Boothe, T. et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol. Metab.5, 366–378 (2016). DOI

Belfiore, A., Frasca, F., Pandini, G., Sciacca, L. & Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev.30, 586–623 (2009). DOI

Leibiger, B. et al. PI3K-C2α knockdown results in rerouting of insulin signaling and pancreatic beta cell proliferation. Cell Rep.13, 15–22 (2015). DOI

Kumar, S., Bradley, C. L., Mukashyaka, P. & Doerrler, W. T. Identification of essential arginine residues of Escherichiacoli DedA/Tvp38 family membrane proteins YqjA and YghB. FEMS Microbiol. Lett.363, fnw133 (2016).

Dahms, S. O., Hardes, K., Steinmetzer, T. & Than, M. E. X-ray structures of the proprotein convertase furin bound with substrate analogue inhibitors reveal substrate specificity determinants beyond the S4 pocket. Biochemistry57, 925–934 (2018). DOI

Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet.19, 473–490 (2018). DOI

Donath, M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov.13, 465–476 (2014). DOI

Lee, J. H. et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis.42, 503–508 (2010). DOI

Bell, C. C. et al. Transcriptional, functional, and mechanistic comparisons of stem cell–derived hepatocytes, HepaRG cells, and three-dimensional human hepatocyte spheroids as predictive in vitro systems for drug-induced liver injury. Drug Metab. Dispos.45, 419–429 (2017). DOI

Wijkstrom, J. et al. Renal morphology, clinical findings, and progression rate in Mesoamerican nephropathy. Am. J. Kidney Dis.69, 626–636 (2017). DOI

Weibel, E. R. Stereological methods in cell biology: where are we—where are we going? J. Histochem. Cytochem.29, 1043–1052 (1981). DOI

Parini, P., Johansson, L., Broijersen, A., Angelin, B. & Rudling, M. Lipoprotein profiles in plasma and interstitial fluid analyzed with an automated gel-filtration system. Eur. J. Clin. Invest.36, 98–104 (2006). DOI

Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods68, 105–115 (2014). DOI

Schneedorferova, I., Tomcala, A. & Valterova, I. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues. Food Chem.176, 205–211 (2015). DOI

Kutsukake, M. et al. Circulating IGF-binding protein 7 (IGFBP7) levels are elevated in patients with endometriosis or undergoing diabetic hemodialysis. Reprod. Biol. Endocrinol.6, 54 (2008). DOI

Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol.14, R36 (2013). DOI

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930 (2014). DOI

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). DOI

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). DOI

Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol.11, R25 (2010). DOI

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.57, 289–300 (1995).

Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.34, 267 (2003). DOI

Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics23, 257–258 (2007). DOI

Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res.41, D991–D995 (2013). DOI

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43, e47 (2015). DOI

Rosner, B. Fundamental of Biostatistics 7th edn (Brooks/Cole CENGAGE Learning, 2010).

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...