Carotid artery plaque composition and distribution: near-infrared spectroscopy and intravascular ultrasound analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32694952
PubMed Central
PMC7361666
DOI
10.1093/eurheartj/suaa097
PII: suaa097
Knihovny.cz E-zdroje
- Klíčová slova
- Carotid artery plaque, Endothelial shear stress, Intravascular ultrasound, Near-infrared spectroscopy, Plaque vulnerability,
- Publikační typ
- časopisecké články MeSH
Most atherosclerotic plaques (APs) form in typical predilection areas of low endothelial shear stress (ESS). On the contrary, previous data hinted that plaques rupture in their proximal parts where accelerated blood flow causes high ESS. It was postulated that high ESS plays an important role in the latter stages of AP formation and in its destabilization. Here, we used near-infrared spectroscopy (NIRS) to analyse the distribution of lipid core based on the presumed exposure to ESS. A total of 117 carotid arteries were evaluated using NIRS and intravascular ultrasound (IVUS) prior to carotid artery stenting. The point of minimal luminal area (MLA) was determined using IVUS. A stepwise analysis of the presence of lipid core was then performed using NIRS. The lipid core presence was quantified as the lipid core burden index (LCBI) within 2 mm wide segments both proximally and distally to the MLA. The analysed vessel was then divided into three 20 mm long thirds (proximal, middle, and distal) for further analysis. The maximal value of LCBI (231.9 ± 245.7) was noted in the segment localized just 2 mm proximally to MLA. The mean LCBI in the middle third was significantly higher than both the proximal (121.4 ± 185.6 vs. 47.0 ± 96.5, P < 0.01) and distal regions (121.4 ± 185.6 vs. 32.4 ± 89.6, P < 0.01). Lipid core was more common in the proximal region when compared with the distal region (mean LCBI 47.0 ± 96.5 vs. 32.4 ± 89.6, P < 0.01).
Zobrazit více v PubMed
Kwak BR, Bäck M, Bochaton-Piallat M-L, Caligiuri G, Daemen M, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC.. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 2014;35:3013–3020, 3020a–3020d. PubMed PMC
Hung OY, Brown AJ, Ahn SG, Veneziani A, Giddens DP, Samady H.. Association of wall shear stress with coronary plaque progression and transformation. Interv Cardiol Clin 2015;4:491–502. PubMed
Fernandes DC, Araujo TLS, Tanaka LY.. Hemodynamic forces in the endothelium: from mechanotransduction to implications on development of atherosclerosis. Endothel Cardiovasc Dis 2018;85–95.
Makris GC, Nicolaides AN, Xu XY, Geroulakos G.. Introduction to the biomechanics of carotid plaque pathogenesis and rupture: review of the clinical evidence. Br J Radiol 2010;83:729–735. PubMed PMC
Cunningham KS, Gotlieb AI.. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 2005;85:9–23. PubMed
Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL.. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J 2007;28:705–710. PubMed
K Van der H, Hierck BP, Krams R, R de C, Cheng C, Baiker M, Pourquie M, Alkemade FE, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE.. Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis 2008;196:542–550. PubMed
Lee D-Y, Chiu J-J.. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J Biomed Sci 2019;26:56. PubMed PMC
Dunn J, Simmons R, Thabet S, Jo H.. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int J Biochem Cell Biol 2015;67:167–176. PubMed PMC
Cheng C, Tempel D, Haperen R, van Baan AVD, Grosveld F, Daemen M, Krams R, Crom RD.. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 2006;113:2744–2753. PubMed
Groen HC, Gijsen FJH, Lugt AVD, Ferguson MS, Hatsukami TS, Steen AVD, Yuan C, Wentzel JJ.. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 2007;38:2379–2381. PubMed
Wentzel JJ, Schuurbiers JCH, Gonzalo Lopez N, Gijsen FJH, Giessen AVD, Groen HC, Dijkstra J, Garcia-Garcia HM, Serruys PW.. In vivo assessment of the relationship between shear stress and necrotic core in early and advanced coronary artery disease. EuroIntervention 2013;9:989–995. PubMed
Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, Gillard JH, Teng Z, Bennett MR.. Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging 2017;10:1472–1483. PubMed PMC
Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Timmins LH, Binongo JNG, Golub LJ, Corban MT, Finn AV, Oshinsk JN, Quyyumi AA, Giddens DP, Samady H.. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc 2012;1:e002543. PubMed PMC
Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP.. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 2011;124:779–788. PubMed
Yamamoto E, Thondapu V, Poon E, Sugiyama T, Fracassi F, Dijkstra J, Lee H, Ooi A, Barlis P, Jang I-K.. Endothelial shear stress and plaque erosion. JACC Cardiovasc Imaging 2019;12:374–375. PubMed
Shishikura D, Sidharta SL, Honda S, Takata K, Kim SW, Andrews J, Montarello N, Delacroix S, Baillie T, Worthley MI, Psaltis PJ, Nicholls SJ.. The relationship between segmental wall shear stress and lipid core plaque derived from near-infrared spectroscopy. Atherosclerosis 2018;275:68–73. PubMed
Štěchovský C, Hájek P, Horváth M, Špaček M, Veselka J.. Near-infrared spectroscopy combined with intravascular ultrasound in carotid arteries. Int J Cardiovasc Imaging 2016;32:181–188. PubMed
Štěchovský C, Hájek P, Horváth M, Veselka J.. Effect of stenting on the near-infrared spectroscopy-derived lipid core burden index of carotid artery plaque. EuroIntervention 2019;15:e289–e296. PubMed
Veselka J, Špaček M, Hájek P, Horváth M, Štěchovský C, Zimolová P.. Impact of single versus double vessel carotid disease on long-term survival in patients treated with carotid stenting. Int J Cardiol 2014;176:1299–1300. PubMed
Štěchovský C, Hájek P, Horváth M, Špaček M, Veselka J.. Composition of carotid artery stenosis and restenosis: a series of patients assessed with intravascular ultrasound and near-infrared spectroscopy. Int J Cardiol 2016;207:64–66. PubMed
Spacek M, Stechovsky C, Horvath M, Hajek P, Zimolova P, Veselka J.. Evaluation of cerebrovascular reserve in patients undergoing carotid artery stenting and its usefulness in predicting significant hemodynamic changes during temporary carotid occlusion. Physiol Res 2016;65:71–79. PubMed
Horváth M, Hájek P, Štěchovský C, Honěk J, Veselka J.. Intravascular near-infrared spectroscopy: a possible tool for optimizing the management of carotid artery disease. Int J Angiol 2015;24:198–204. PubMed PMC
Veselka J, ČErná D, Zimolová P, MartinkovičOvá L, Fiedler J, Hájek P, Malý M, Zemánek D, DuchoňOvá R, Feasibility, safety, and early outcomes of direct carotid artery stent implantation with use of the FilterWire EZ™ Embolic Protection System. Catheter Cardiovasc Interv 2009;73:733–738. PubMed
Veselka J, Cerná D, Zimolová P, Blasko P, Fiedler J, Hájek P, Maly M, Zemánek D, Duchonová R.. Thirty-day outcomes of direct carotid artery stenting with cerebral protection in high-risk patients. Circ J 2007;71:1468–1472. PubMed
Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, Jiang C, Madden SP, Caplan JD, Burke AP, Virmani R, Goldstein J, Muller JE.. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging 2008;1:638–648. PubMed
Horvath M, Hajek P, Stechovsky C, Honek J, Spacek M, Veselka J.. The role of near-infrared spectroscopy in the detection of vulnerable atherosclerotic plaques. Arch Med Sci 2016;12:1308–1316. PubMed PMC
Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G.. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 2016;3:257–267. PubMed PMC
Cho YI, Cho DJ, Rosenson RS.. Endothelial shear stress and blood viscosity in peripheral arterial disease. Curr Atheroscler Rep 2014;16:404. PubMed
Shyy J-J, Chien S.. Role of integrins in endothelial mechanosensing of shear stress. Circ Res 2002;91:769–775. PubMed
Aquila G, Morelli MB, Vieceli Dalla Sega F, Fortini F, Nigro P, Caliceti C, Ferracin M, Negrini M, Pannuti A, Bonora M, Pinton P, Ferrari R, Rizzo P.. Heart rate reduction with ivabradine in the early phase of atherosclerosis is protective in the endothelium of ApoE-deficient mice. J Physiol Pharmacol 2018;69:35–52. PubMed
Xing R, Moerman AM, Ridwan RY, Gaalen KV, Meester EJ, Steen AVD, Evans PC, Gijsen FJH, Heiden KVD.. The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice. Sci Rep 2018;8:14014. PubMed PMC
Le L, Duckles H, Schenkel T, Mahmoud M, Tremoleda J, Wylezinska-Arridge M, Ali M, Bowden N, Villa-Uriol M-C, Heiden KVD, Xing R, Gijsen F, Wentzel J, Lawrie A, Feng S, Arnold N, Gsell W, Lungu A, Hose R, Spencer T, Halliday I, Ridger V, Evans P.. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thromb Haemost 2016;116:181–190. PubMed
Cheng C, Haperen R, van Waard MD, Damme LV, Tempel D, Hanemaaijer L, Cappellen GV, Bos J, Slager CJ, Duncker DJ, Steen AVD, Crom RD, Krams R.. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood 2005;106:3691–3698. PubMed
Wang H-H, Hsieh H-L, Yang C-M.. Nitric oxide production by endothelin-1 enhances astrocytic migration via the tyrosine nitration of matrix metalloproteinase-9. J Cell Physiol 2011;226:2244–2256. PubMed
Dumont O, Loufrani L, Henrion D.. Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol 2007;27:317–324. PubMed PMC
Death AK, Nakhla S, McGrath KCY, Martell S, Yue DK, Jessup W, Celermajer DS.. Nitroglycerin upregulates matrix metalloproteinase expression by human macrophages. J Am Coll Cardiol 2002;39:1943–1950. PubMed
Slager C, Wentzel J, Gijsen F, Thury A, Wal AVD, Schaar J, Serruys P.. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2005;2:456–464. PubMed
Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 2009;6:16–26. PubMed PMC
Kundu PK, Cohen IM, Dowling DR, Tryggvason G. Fluid mechanics- 6Th Edition. [online] Elsevier.com. Available at: <https://www.elsevier.com/books/fluid-mechanics/kundu/978-0-12-405935-1
Cebral JR, Castro MA, Putman CM, Alperin N.. Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas 2008;29:585–594. PubMed PMC
Horváth M, Hájek P, Štěchovský C, Veselka J.. Vulnerable plaque imaging and acute coronary syndrome. Cor Vasa 2014;56:e362–e368.
Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE.. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002;105:923–927. PubMed
Waxman S, Dixon SR, L'Allier P, Moses JW, Petersen JL, Cutlip D, Tardif J-C, Nesto RW, Muller JE, Hendricks MJ, Sum ST, Gardner CM, Goldstein JA, Stone GW, Krucoff MW.. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2009;2:858–868. PubMed
Madder RD, Husaini M, Davis AT, Oosterhout SV, Harnek J, Götberg M, Erlinge D.. Detection by near-infrared spectroscopy of large lipid cores at culprit sites in patients with non-st-segment elevation myocardial infarction and unstable angina. Catheter Cardiovasc Interv 2015;86:1014–1021. PubMed
Karlsson S, Anesäter E, Fransson K, Andell P, Persson J, Erlinge D.. Intracoronary near-infrared spectroscopy and the risk of future cardiovascular events. Open Heart 2019;6:e000917. PubMed PMC
Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, Sum ST, Kini A, Sharma S, Rizik D, Brilakis ES, Shunk KA, Petersen J, Weisz G, Virmani R, Nicholls SJ, Maehara A, Mintz GS, Stone GW, Muller JE.. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2013;6:838–846. PubMed
Madder RD, Puri R, Muller JE, Harnek J, Götberg M, VanOosterhout S, Chi M, Wohns D, McNamara R, Wolski K, Madden S, Sidharta S, Andrews J, Nicholls SJ, Erlinge D.. Confirmation of the intracoronary near-infrared spectroscopy threshold of lipid-rich plaques that underlie st-segment-elevation myocardial infarction. Arterioscler Thromb Vasc Biol 2016;36:1010–1015. PubMed
Danek BA, Karatasakis A, Karacsonyi J, Alame A, Resendes E, Kalsaria P, Nguyen-Trong P-K, Rangan BV, Roesle M, Abdullah S, Banerjee S, Brilakis ES.. Long-term follow-up after near-infrared spectroscopy coronary imaging: insights from the lipid cORe plaque association with CLinical events (ORACLE-NIRS) registry. Cardiovasc Revasc Med 2017;18:177–181. PubMed
Schuurman A-S, Vroegindewey M, Kardys I, Oemrawsingh RM, Cheng JM, Boer SD, Garcia-Garcia HM, Geuns R-JV, Regar ES, Daemen J, Mieghem NM, van Serruys PW, Boersma E, Akkerhuis KM.. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J 2018;39:295–302. PubMed
Waksman R, Di Mario C, Torguson R, Ali ZA, Singh V, Skinner WH, Artis AK, Cate TT, Powers E, Kim C, Regar E, Wong SC, Lewis S, Wykrzykowska J, Dube S, Kazziha S, van der Ent M, Shah P, Craig PE, Zou Q, Kolm P, Brewer HB, Garcia-Garcia HM, Samady H, Tobis J, Zainea M, Leimbach W, Lee D, Lalonde T, Skinner W, Villa A, Liberman H, Younis G, de Silva R, Diaz M, Tami L, Hodgson J, Raveendran G, Goswami N, Arias J, Lovitz L, Carida Ii R, Potluri S, Prati F, Erglis A, Pop A, McEntegart M, Hudec M, Rangasetty U, Newby D.. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019;394:1629–1637. PubMed
Oemrawsingh RM, Cheng JM, García-García HM, Geuns R-JV, Boer SD, Simsek C, Kardys I, Lenzen MJ, Domburg RV, Regar E, Serruys PW, Akkerhuis KM, Boersma E; ATHEROREMO-NIRS Investigators. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol 2014;64:2510–2518. PubMed
Goldstein JA, Maini B, Dixon SR, Brilakis ES, Grines CL, Rizik DG, Powers ER, Steinberg DH, Shunk KA, Weisz G, Moreno PR, Kini A, Sharma SK, Hendricks MJ, Sum ST, Madden SP, Muller JE, Stone GW, Kern MJ.. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv 2011;4:429–437. PubMed
Dixon SR, Grines CL, Munir A, Madder RD, Safian RD, Hanzel GS, Pica MC, Goldstein JA.. Analysis of target lesion length before coronary artery stenting using angiography and near-infrared spectroscopy versus angiography alone. Am J Cardiol 2012;109:60–66. PubMed
Horvath M, Hajek P, Muller JE, Honek J, Stechovsky C, Spacek M, Veselka J.. First-in-man near-infrared spectroscopy proof of lipidcore embolization during carotid artery stenting. Arch Med Sci 2016;12:915–918. PubMed PMC