Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32699987
PubMed Central
PMC7359995
DOI
10.1007/s40487-019-00100-5
PII: 10.1007/s40487-019-00100-5
Knihovny.cz E-zdroje
- Klíčová slova
- Algorithm, Multiple myeloma, Prognostic model, Risk, Survival,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Risk stratification tools provide valuable information to inform treatment decisions. Existing algorithms for patients with multiple myeloma (MM) were based on patients with newly diagnosed disease, and these have not been validated in the relapsed setting or in routine clinical practice. We developed a risk stratification algorithm (RSA) for patients with MM at initiation of second-line (2L) treatment, based on data from the Czech Registry of Monoclonal Gammopathies. METHODS: Predictors of overall survival (OS) at 2L treatment were identified using Cox proportional hazards models and backward selection. Risk scores were obtained by multiplying the hazard ratios for each predictor. The K-adaptive partitioning for survival (KAPS) algorithm defined four groups of stratification based on individual risk scores. RESULTS: Performance of the RSA was assessed using Nagelkerke's R2 test and Harrell's concordance index through Kaplan-Meier analysis of OS data. Prognostic groups were successfully defined based on real-world data. Use of a multiplicative score based on Cox modeling and KAPS to define cut-off values was effective. CONCLUSION: Through innovative methods of risk assessment and collaboration between physicians and statisticians, the RSA was capable of stratifying patients at 2L treatment by survival expectations. This approach can be used to develop clinical decision-making tools in other disease areas to improve patient management. FUNDING: Amgen Europe GmbH.
Amgen GmbH Rotkreuz Switzerland
Department of Health Economics and Decision Science University of Sheffield Sheffield UK
Department of Hematooncology University Hospital Ostrava Ostrava Poruba Czech Republic
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Health and Wellbeing University of Glasgow Glasgow UK
Zobrazit více v PubMed
Kattan MW, Eastham JA, Stapleton AM, et al. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90(10):766–771. doi: 10.1093/jnci/90.10.766. PubMed DOI
Ravdin PM, Siminoff LA, Davis GJ, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001;19(4):980–991. doi: 10.1200/JCO.2001.19.4.980. PubMed DOI
Wishart GC, Azzato EM, Greenberg DC, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1. doi: 10.1186/bcr2464. PubMed DOI PMC
Bombardier C, Gladman DD, Urowitz MB, et al. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35(6):630–640. doi: 10.1002/art.1780350606. PubMed DOI
Gladman D, Ginzler E, Goldsmith C, et al. Systemic lupus international collaborative clinics: development of a damage index in systemic lupus erythematosus. J Rheumatol. 1992;19(11):1820–1821. PubMed
Denis F, Lethrosne C, Pourel N, et al. Improved overall survival in lung cancer patients using a webapplication-mediated follow-up compared to standard modalities: results of a phase III randomized trial. J Clin Oncol. 2016;34 Suppl:Abstr LBA9006. doi: 10.1200/JCO.2016.34.15_suppl.LBA9006. DOI
Yong K, Delforge M, Driessen C, et al. Multiple myeloma: patient outcomes in real-world practice. Br J Haematol. 2016;175(2):252–264. doi: 10.1111/bjh.14213. PubMed DOI PMC
Moreau P, San Miguel J, Sonneveld P, et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv52–iv61. doi: 10.1093/annonc/mdx096. PubMed DOI
Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–3420. doi: 10.1200/JCO.2005.04.242. PubMed DOI
Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–2869. doi: 10.1200/JCO.2015.61.2267. PubMed DOI PMC
Eo S, Kang H, Hong S, et al. The K-adaptive partitioning for survival data, with an application to cancer staging 2014. https://arxiv.org/abs/1306.4615. Accessed Jul 2017
Hari P. Recent advances in understanding multiple myeloma. Hematol Oncol Stem Cell Ther. 2017;10(4):267–271. doi: 10.1016/j.hemonc.2017.05.005. PubMed DOI
Moreau P. The future of therapy for relapsed/refractory multiple myeloma: emerging agents and novel treatment strategies. Semin Hematol. 2012;49(Suppl 1):S33–S46. doi: 10.1053/j.seminhematol.2012.05.004. PubMed DOI
Hájek R, Jarkovsky J, Bouwmeester W, et al. Predictors of overall survival in patients with multiple myeloma initiating first- and second-line treatment in the Czech Republic. Blood. 2016;128:Abstr 3607. doi: 10.1182/blood.V128.22.3607.3607. DOI
Radocha J, Pour L, Spicka I, et al. Registry of monoclonal gammopathies (RMG) in the Czech Republic. Blood. 2015;126:Abstr 4514. doi: 10.1182/blood.V126.23.4514.4514. DOI
Gonzalez-McQuire S, Campioni M, Bennison C, et al. Development of a conceptual model of multiple myeloma for use in economic modelling: a systematic literature review to identify the evidence base. Value Health. 2015;18(7):A701. doi: 10.1016/j.jval.2015.09.2623. DOI
Gonzalez-McQuire S, Dimopoulos MA, Weisel K, et al. Development of an initial conceptual model of multiple myeloma to support clinical and health economics decision making. MDM Policy Pract. 2019;4(1):2381468318814253. doi: 10.1177/2381468318814253. PubMed DOI PMC
Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:b604. doi: 10.1136/bmj.b604. PubMed DOI
Collins GS, Ogundimu EO, Cook JA, et al. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Stat Med. 2016;35(23):4124–4135. doi: 10.1002/sim.6986. PubMed DOI PMC
White IR, Royston P. Imputing missing covariate values for the Cox model. Stat Med. 2009;28(15):1982–1998. doi: 10.1002/sim.3618. PubMed DOI PMC
van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–68. doi: 10.18637/jss.v045.i03. DOI
Heymans MW, van Buuren S, Knol DL, et al. Variable selection under multiple imputation using the bootstrap in a prognostic study. BMC Med Res Methodol. 2007;7:33. doi: 10.1186/1471-2288-7-33. PubMed DOI PMC
Wood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data? Stat Med. 2008;27(17):3227–3246. doi: 10.1002/sim.3177. PubMed DOI
Pickering JW, Endre ZH. New metrics for assessing diagnostic potential of candidate biomarkers. Clin J Am Soc Nephrol. 2012;7(8):1355–1364. doi: 10.2215/CJN.09590911. PubMed DOI
Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ. 2015;351:h3868. doi: 10.1136/bmj.h3868. PubMed DOI PMC
Hájek R, Delforge M, Raab MS, et al. Development and validation of a novel risk stratification algorithm for relapsed multiple myeloma. Br J Haematol. 2019 doi: 10.1111/bjh.16105. PubMed DOI PMC
Steyerberg E. Clinical prediction models. New York: Springer; 2009.
Harrell FE. Regression modeling strategies. New York: Springer; 2001.
Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. 2016;353:i3140. doi: 10.1136/bmj.i3140. PubMed DOI PMC
Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–1931. doi: 10.1093/eurheartj/ehu207. PubMed DOI PMC
Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–141. doi: 10.1002/sim.2331. PubMed DOI
Raab MS, Cavo M, Delforge M, et al. Multiple myeloma: practice patterns across Europe. Br J Haematol. 2016;175(1):66–76. doi: 10.1111/bjh.14193. PubMed DOI