Direct fluorogenic detection of palladium and platinum organometallic complexes with proteins and nucleic acids in polyacrylamide gels
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32704011
PubMed Central
PMC7378192
DOI
10.1038/s41598-020-69336-w
PII: 10.1038/s41598-020-69336-w
Knihovny.cz E-zdroje
- MeSH
- akrylové pryskyřice MeSH
- DNA chemie MeSH
- organoplatinové sloučeniny chemie MeSH
- palladium chemie MeSH
- platina chemie MeSH
- proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylové pryskyřice MeSH
- DNA MeSH
- organoplatinové sloučeniny MeSH
- palladium MeSH
- platina MeSH
- polyacrylamide gels MeSH Prohlížeč
- proteiny MeSH
Allyl- and propargyl ethers of umbelliferone are sensitive probes for palladium and platinum, including anticancer compounds cisplatin, carboplatin and oxaliplatin, and effective for direct visualization of protein and DNA complexes with organometallic compounds in polyacrylamide gels allowing easy detection of interactions with analyzed protein or nucleic acid. Both probes can be used for fast evaluation of Pd/Pt binding to nanocarriers relevant in drug targeted therapy or specific clinically relevant target macromolecules.
Central European Institute of Technology Brno University of Technology 621 00 Brno Czech Republic
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University Zemedelska 1 613 00 Brno Czech Republic
Institute of Physiology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Lazarevic T, Rilak A, Bugarcic ZD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 2017;142:8–31. doi: 10.1016/j.ejmech.2017.04.007. PubMed DOI
Gras M, et al. Anticancer activity of new organo-ruthenium, rhodium and iridium complexes containing the 2-(pyridine-2-yl)thiazole N,N-chelating ligand. J. Organomet. Chem. 2010;695:1119–1125. doi: 10.1016/j.jorganchem.2010.01.020. DOI
Devaraj NK. The future of bioorthogonal chemistry. ACS Central Sci. 2018;4:952–959. doi: 10.1021/acscentsci.8b00251. PubMed DOI PMC
Mansour AM, Shehab OR. Lysozyme and DNA binding affinity of Pd(II) and Pt(II) complexes bearing charged N,N-pyridylbenzimidazole bidentate ligands. Dalton Trans. 2018;47:3459–3468. doi: 10.1039/c7dt04347c. PubMed DOI
Tesarova B, et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(II) coordination compounds. Int. J. Biol. Macromol. 2019;126:1099–1111. doi: 10.1016/j.ijbiomac.2018.12.128. PubMed DOI
Tracey MP, Pham D, Koide K. Fluorometric imaging methods for palladium and platinum and the use of palladium for imaging biomolecules. Chem. Soc. Rev. 2015;44:4769–4791. doi: 10.1039/c4cs00323c. PubMed DOI
Nieberding M, Tracey MP, Koide K. Noneffervescent method for catalysis-based palladium detection with color or fluorescence. ACS Sens. 2017;2:1737–1743. doi: 10.1021/acssensors.7b00697. PubMed DOI
Koide K, et al. A competitive and reversible deactivation approach to catalysis-based quantitative assays. Nat. Commun. 2016;7:1–7. doi: 10.1038/ncomms10691. PubMed DOI PMC
Garner AL, Koide K. Studies of a fluorogenic probe for palladium and platinum leading to a palladium-specific detection method. Chem. Commun. 2009 doi: 10.1039/b814197e. PubMed DOI
Song F, Garner AL, Koide K. A highly sensitive fluorescent sensor for palladium based on the allylic oxidative insertion mechanism. J. Am. Chem. Soc. 2007;129:12354–12355. doi: 10.1021/ja073910q. PubMed DOI
Trost B, VanVranken D. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 1996;96:395–422. doi: 10.1021/cr9409804. PubMed DOI
Santra M, Ko S, Shin I, Ahn K. Fluorescent detection of palladium species with an O-propargylated fluorescein. Chem. Commun. 2010;46:3964–3966. doi: 10.1039/c001922d. PubMed DOI
Yusop R, Unciti-Broceta A, Johansson E, Sanchez-Martin R, Bradley M. Palladium-mediated intracellular chemistry. Nat. Chem. 2011;3:239–243. doi: 10.1038/nchem.981|10.1038/NCHEM.981. PubMed DOI
Miller MA, et al. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. 2017;8:15906. doi: 10.1038/ncomms15906. PubMed DOI PMC
Martinez-Calvo M, et al. Intracellular deprotection reactions mediated by palladium complexes equipped with designed phosphine ligands. ACS Catal. 2018;8:6055–6061. doi: 10.1021/acscatal.8b01606. PubMed DOI PMC
Kitley WR, Santa Maria PJ, Cloyd RA, Wysocki LM. Synthesis of high contrast fluorescein-diethers for rapid bench-top sensing of palladium. Chem. Commun. 2015;51:8520–8523. doi: 10.1039/c5cc02192h. PubMed DOI
Zhu BC, et al. A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chem. Commun. 2011;47:8656–8658. doi: 10.1039/c1cc13215f. PubMed DOI
Mead JA, Smith JN, Williams RT. Studies in detoxication. 67. The biosynthesis of the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric determination of beta-glucuronidase. Biochem. J. 1955;61:569–574. doi: 10.1042/bj0610569. PubMed DOI PMC
Jiménez-Moreno E, et al. Vinyl ether/tetrazine pair for the traceless release of alcohols in cells. Angew. Chem. Int. Ed. Engl. 2017;56:243–247. doi: 10.1002/anie.201609607. PubMed DOI PMC
Ding YB, Zhao S, Wang QQ, Yu X, Zhang WH. Construction of a coumarin based fluorescent sensing platform for palladium and hydrazine detection. Sens. Actuator B Chem. 2018;256:1107–1113. doi: 10.1016/j.snb.2017.10.119. DOI
Indrigo E, et al. Intracellular delivery of a catalytic organometallic complex. Chem. Commun. 2017;53:6712–6715. doi: 10.1039/c7cc02988h. PubMed DOI
Feng S, Liu D, Feng W, Feng G. Allyl fluorescein ethers as promising fluorescent probes for carbon monoxide imaging in living cells. Anal. Chem. 2017;89:3754–3760. doi: 10.1021/acs.analchem.7b00135. PubMed DOI
Kim H, Lee S, Lee J, Tae J. Rhodamine triazole-based fluorescent probe for the detection of Pt2+ Org. Lett. 2010;12:5342–5345. doi: 10.1021/ol102397n. PubMed DOI
Montagner D, Yap SQ, Ang WH. A fluorescent probe for investigating the activation of anticancer platinum(IV) prodrugs based on the cisplatin scaffold. Angew. Chem. Int. Ed. Engl. 2013;52:11785–11789. doi: 10.1002/anie.201305734. PubMed DOI
Pohorilets I, et al. Kinetics and inverse temperature dependence of a Tsuji-Trost reaction in aqueous buffer. ACS Catal. 2019;9:11720–11733. doi: 10.1021/acscatal.9b03011. DOI
Tatur J, Hagedoorn PL, Overeijnder ML, Hagen WR. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles. 2006;10:139–148. doi: 10.1007/s00792-005-0484-x. PubMed DOI
Dennis MS, et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 2002;277:35035–35043. doi: 10.1074/jbc.M205854200. PubMed DOI
de la Faverie AR, Guedin A, Bedrat A, Yatsunyk LA, Mergny JL. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014;42:1–8. doi: 10.1093/nar/gku111. PubMed DOI PMC
Muller J. Nucleic acid duplexes with metal-mediated base pairs and their structures. Coord. Chem. Rev. 2019;393:37–47. doi: 10.1016/j.ccr.2019.05.007. DOI
Rothlisberger P, et al. Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide. J. Inorg. Biochem. 2019;191:154–163. doi: 10.1016/j.jinorgbio.2018.11.009. PubMed DOI
Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M. A discrete self-assembled metal array in artificial DNA. Science. 2003;299:1212–1213. doi: 10.1126/science.1080587. PubMed DOI
Liang MM, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. U. S. A. 2014;111:14900–14905. doi: 10.1073/pnas.1407808111. PubMed DOI PMC
Ferraro G, Ciambellotti S, Messori L, Merlino A. Cisplatin binding sites in human H-Chain Ferritin. Inorg. Chem. 2017;56:9064–9070. doi: 10.1021/acs.inorgchem.7b01072. PubMed DOI
Pontillo N, Pane F, Messori L, Amoresano A, Merlino A. Cisplatin encapsulation within a ferritin nanocage: a high-resolution crystallographic study. Chem. Commun. 2016;52:4136–4139. doi: 10.1039/c5cc10365g. PubMed DOI
Kofoed J, Darbre T, Reymond J. Artificial aldolases from peptide dendrimer combinatorial libraries. Org. Biomol. Chem. 2006;4:3268–3281. doi: 10.1039/b607342e. PubMed DOI
Pekarik V, et al. Visualization of stable ferritin complexes with palladium, rhodium and iridium nanoparticles detected by their catalytic activity in native polyacrylamide gels. Dalton Trans. 2017;46:13690–13694. doi: 10.1039/c7dt02818k. PubMed DOI