Experimental kernel-based quantum machine learning in finite feature space
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-19002S
Grantová Agentura České Republiky
LO1305
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01./0.0/0.0/16_019/0000754
Ministry of Education, Youth and Sports of the Czech Republic
IGA-PrF-2019-008
Palacky University
FA9550-14-1-0040
MURI Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR)
W911NF-18-1-0358
Army Research Office
FA2386-18-1-4045
Asian Office of Aerospace Research and Development (AOARD)
JPMJCR1676
Japan Science and Technology Agency (JST)
17-52-50023
Japan Society for the Promotion of Science (JSPS)
PubMed
32704032
PubMed Central
PMC7378258
DOI
10.1038/s41598-020-68911-5
PII: 10.1038/s41598-020-68911-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We implement an all-optical setup demonstrating kernel-based quantum machine learning for two-dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to projective measurements on suitably designed quantum states encoding the training data, while the model training is processed on a classical computer. Our two-photon proposal encodes data points in a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the deployable kernels, we optimize feature maps towards the resulting kernels' ability to separate points, i.e., their "resolution," under the constraint of finite, fixed Hilbert space dimension. Implementing these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised classification tasks in feature space. We demonstrate such kernel-based quantum machine learning using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially better scaling in the required number of qubits than a direct generalization of kernels described in the literature.
Department of Physics The University of Michigan Ann Arbor MI 48109 1040 USA
Faculty of Physics Adam Mickiewicz University 61 614 Poznan Poland
Theoretical Quantum Physics Laboratory RIKEN Cluster for Pioneering Research Wako shi 351 0198 Japan
Zobrazit více v PubMed
Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. Cambridge: MIT Press; 2012.
Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemp. Phys. 2015;56:172. doi: 10.1080/00107514.2014.964942. DOI
Cai X-D, et al. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015;114:110504. doi: 10.1103/PhysRevLett.114.110504. PubMed DOI
Biamonte J, et al. Quantum machine learning. Nature. 2017;549:195. doi: 10.1038/nature23474. PubMed DOI
Schuld M, Fingerhuth M, Petruccione F. Implementing a distance-based classifier with a quantum interference circuit. EPL. 2017;119:60002. doi: 10.1209/0295-5075/119/60002. DOI
Gao J, et al. Experimental machine learning of quantum states. Phys. Rev. Lett. 2018;120:240501. doi: 10.1103/PhysRevLett.120.240501. PubMed DOI
Ciliberto C, et al. Quantum machine learning: A classical perspective. Proc. R. Soc. A. 2018;474:20170551. doi: 10.1098/rspa.2017.0551. PubMed DOI PMC
Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014;113:130503. doi: 10.1103/PhysRevLett.113.130503. PubMed DOI
Li Z, Liu X, Xu N, Du J. Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 2015;114:140504. doi: 10.1103/PhysRevLett.114.140504. PubMed DOI
Chatterjee R, Yu T. Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Inf. Commun. 2017;17:1292.
Sheng Y-B, Zhou L. Distributed secure quantum machine learning. Sci. Bull. 2017;62:1025–1029. doi: 10.1016/j.scib.2017.06.007. PubMed DOI
Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019;122:040504. doi: 10.1103/PhysRevLett.122.040504. PubMed DOI
Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. PubMed
Wang W, Lo H-K. Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A. 2019;100:062334. doi: 10.1103/PhysRevA.100.062334. DOI
Hendry D, Feiguin AE. Machine learning approach to dynamical properties of quantum many-body systems. Phys. Rev. B. 2019;100:245123. doi: 10.1103/PhysRevB.100.245123. DOI
Zhang Y, et al. Machine learning in electronic-quantum-matter imaging experiments. Nature. 2019;570:484–490. doi: 10.1038/s41586-019-1319-8. PubMed DOI
Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of the hilbert-schmidt distance between two-qubit states as a means for reducing the complexity of machine learning. Phys. Rev. Lett. 2019;123:260501. doi: 10.1103/PhysRevLett.123.260501. PubMed DOI
Gyongyosi, L. & Imre, S. Optimizing high-efficiency quantum memory with quantum machine learning for near-term quantum devices. Sci. Rep.10, (2020). PubMed PMC
Gneiting C, Hornberger K. Detecting entanglement in spatial interference. Phys. Rev. Lett. 2011;106:210501. doi: 10.1103/PhysRevLett.106.210501. PubMed DOI
Nielsen MA, Chuang I. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2002.
Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. doi: 10.22331/q-2018-08-06-79. DOI
Fujii K, Nakajima K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 2017;8:024030. doi: 10.1103/PhysRevApplied.8.024030. DOI
Dunjko V, Ge Y, Cirac JI. Computational speedups using small quantum devices. Phys. Rev. Lett. 2018;121:250501. doi: 10.1103/PhysRevLett.121.250501. PubMed DOI
Kandala A, et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature. 2019;567:491. doi: 10.1038/s41586-019-1040-7. PubMed DOI
Shen Y, et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics. 2017;11:441. doi: 10.1038/nphoton.2017.93. DOI
Bueno J, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica. 2018;5:756. doi: 10.1364/OPTICA.5.000756. DOI
Tacchino F, Macchiavello C, Gerace D, Bajoni D. An artificial neuron implemented on an actual quantum processor. npj Quantum Inf. 2019;5:26. doi: 10.1038/s41534-019-0140-4. DOI
Kak, S. C. Quantum neural computing. In Advances in Imaging and Electron Physics, Vol. 94, 259 (Elsevier, Amsterdam, 1995).
Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors (2018). arXiv:1802.06002 .
Li Y, Benjamin SC. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X. 2017;7:021050.
Kandala A, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242. doi: 10.1038/nature23879. PubMed DOI
Mitarai K, Negoro M, Kitagawa M, Fujii K. Quantum circuit learning. Phys. Rev. A. 2018;98:032309. doi: 10.1103/PhysRevA.98.032309. DOI