Experimental kernel-based quantum machine learning in finite feature space

. 2020 Jul 23 ; 10 (1) : 12356. [epub] 20200723

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32704032

Grantová podpora
19-19002S Grantová Agentura České Republiky
LO1305 Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01./0.0/0.0/16_019/0000754 Ministry of Education, Youth and Sports of the Czech Republic
IGA-PrF-2019-008 Palacky University
FA9550-14-1-0040 MURI Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR)
W911NF-18-1-0358 Army Research Office
FA2386-18-1-4045 Asian Office of Aerospace Research and Development (AOARD)
JPMJCR1676 Japan Science and Technology Agency (JST)
17-52-50023 Japan Society for the Promotion of Science (JSPS)

Odkazy

PubMed 32704032
PubMed Central PMC7378258
DOI 10.1038/s41598-020-68911-5
PII: 10.1038/s41598-020-68911-5
Knihovny.cz E-zdroje

We implement an all-optical setup demonstrating kernel-based quantum machine learning for two-dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to projective measurements on suitably designed quantum states encoding the training data, while the model training is processed on a classical computer. Our two-photon proposal encodes data points in a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the deployable kernels, we optimize feature maps towards the resulting kernels' ability to separate points, i.e., their "resolution," under the constraint of finite, fixed Hilbert space dimension. Implementing these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised classification tasks in feature space. We demonstrate such kernel-based quantum machine learning using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially better scaling in the required number of qubits than a direct generalization of kernels described in the literature.

Zobrazit více v PubMed

Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. Cambridge: MIT Press; 2012.

Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemp. Phys. 2015;56:172. doi: 10.1080/00107514.2014.964942. DOI

Cai X-D, et al. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015;114:110504. doi: 10.1103/PhysRevLett.114.110504. PubMed DOI

Biamonte J, et al. Quantum machine learning. Nature. 2017;549:195. doi: 10.1038/nature23474. PubMed DOI

Schuld M, Fingerhuth M, Petruccione F. Implementing a distance-based classifier with a quantum interference circuit. EPL. 2017;119:60002. doi: 10.1209/0295-5075/119/60002. DOI

Gao J, et al. Experimental machine learning of quantum states. Phys. Rev. Lett. 2018;120:240501. doi: 10.1103/PhysRevLett.120.240501. PubMed DOI

Ciliberto C, et al. Quantum machine learning: A classical perspective. Proc. R. Soc. A. 2018;474:20170551. doi: 10.1098/rspa.2017.0551. PubMed DOI PMC

Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014;113:130503. doi: 10.1103/PhysRevLett.113.130503. PubMed DOI

Li Z, Liu X, Xu N, Du J. Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 2015;114:140504. doi: 10.1103/PhysRevLett.114.140504. PubMed DOI

Chatterjee R, Yu T. Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Inf. Commun. 2017;17:1292.

Sheng Y-B, Zhou L. Distributed secure quantum machine learning. Sci. Bull. 2017;62:1025–1029. doi: 10.1016/j.scib.2017.06.007. PubMed DOI

Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019;122:040504. doi: 10.1103/PhysRevLett.122.040504. PubMed DOI

Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. PubMed

Wang W, Lo H-K. Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A. 2019;100:062334. doi: 10.1103/PhysRevA.100.062334. DOI

Hendry D, Feiguin AE. Machine learning approach to dynamical properties of quantum many-body systems. Phys. Rev. B. 2019;100:245123. doi: 10.1103/PhysRevB.100.245123. DOI

Zhang Y, et al. Machine learning in electronic-quantum-matter imaging experiments. Nature. 2019;570:484–490. doi: 10.1038/s41586-019-1319-8. PubMed DOI

Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of the hilbert-schmidt distance between two-qubit states as a means for reducing the complexity of machine learning. Phys. Rev. Lett. 2019;123:260501. doi: 10.1103/PhysRevLett.123.260501. PubMed DOI

Gyongyosi, L. & Imre, S. Optimizing high-efficiency quantum memory with quantum machine learning for near-term quantum devices. Sci. Rep.10, (2020). PubMed PMC

Gneiting C, Hornberger K. Detecting entanglement in spatial interference. Phys. Rev. Lett. 2011;106:210501. doi: 10.1103/PhysRevLett.106.210501. PubMed DOI

Nielsen MA, Chuang I. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2002.

Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. doi: 10.22331/q-2018-08-06-79. DOI

Fujii K, Nakajima K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 2017;8:024030. doi: 10.1103/PhysRevApplied.8.024030. DOI

Dunjko V, Ge Y, Cirac JI. Computational speedups using small quantum devices. Phys. Rev. Lett. 2018;121:250501. doi: 10.1103/PhysRevLett.121.250501. PubMed DOI

Kandala A, et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature. 2019;567:491. doi: 10.1038/s41586-019-1040-7. PubMed DOI

Shen Y, et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics. 2017;11:441. doi: 10.1038/nphoton.2017.93. DOI

Bueno J, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica. 2018;5:756. doi: 10.1364/OPTICA.5.000756. DOI

Tacchino F, Macchiavello C, Gerace D, Bajoni D. An artificial neuron implemented on an actual quantum processor. npj Quantum Inf. 2019;5:26. doi: 10.1038/s41534-019-0140-4. DOI

Kak, S. C. Quantum neural computing. In Advances in Imaging and Electron Physics, Vol. 94, 259 (Elsevier, Amsterdam, 1995).

Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors (2018). arXiv:1802.06002 .

Li Y, Benjamin SC. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X. 2017;7:021050.

Kandala A, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242. doi: 10.1038/nature23879. PubMed DOI

Mitarai K, Negoro M, Kitagawa M, Fujii K. Quantum circuit learning. Phys. Rev. A. 2018;98:032309. doi: 10.1103/PhysRevA.98.032309. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...