Experimental Measurement of the Hilbert-Schmidt Distance between Two-Qubit States as a Means for Reducing the Complexity of Machine Learning

. 2019 Dec 31 ; 123 (26) : 260501.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31951446

We report on the experimental measurement of the Hilbert-Schmidt distance between two two-qubit states by many-particle interference. We demonstrate that our three-step method for measuring distances in the Hilbert space is far less complex than reconstructing density matrices and that it can be applied in quantum-enhanced machine learning to reduce the complexity of calculating Euclidean distances between multidimensional points, which can be especially interesting for near term quantum technologies and quantum artificial intelligence research. Our results are also a novel example of applying mixed states in quantum information processing. Usually working with mixed states is undesired, but here it gives the possibility of encoding extra information as the degree of coherence between the given two dimensions of the density matrix.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhancing collective entanglement witnesses through correlation with state purity

. 2024 Jul 16 ; 14 (1) : 16374. [epub] 20240716

Synergic quantum generative machine learning

. 2023 Aug 09 ; 13 (1) : 12893. [epub] 20230809

Experimental kernel-based quantum machine learning in finite feature space

. 2020 Jul 23 ; 10 (1) : 12356. [epub] 20200723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...