Enhancing collective entanglement witnesses through correlation with state purity

. 2024 Jul 16 ; 14 (1) : 16374. [epub] 20240716

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39013996

Grantová podpora
OP JAC CZ.02.01.01/00/22_008/0004596 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39013996
PubMed Central PMC11252302
DOI 10.1038/s41598-024-65385-7
PII: 10.1038/s41598-024-65385-7
Knihovny.cz E-zdroje

This research analyzes the adverse impact of white noise on collective quantum measurements and argues that such noise poses a significant obstacle for the otherwise straightforward deployment of collective measurements in quantum communications. Our findings then suggests addressing this issue by correlating outcomes of these measurements with quantum state purity. To test the concept, a support vector machine is employed to boost the performance of several collective entanglement witnesses by incorporating state purity into the classification task of distinguishing entangled states from separable ones. Furthermore, the application of machine learning allows to optimize specificity of entanglement detection given a target value of sensitivity. A response operating characteristic curve is reconstructed based on this optimization and the area under curve calculated to assess the efficacy of the proposed model. Finally, we test the presented approach on an experimental dataset of Werner states.

Zobrazit více v PubMed

Rico A, Huber F. Entanglement detection with trace polynomials. Phys. Rev. Lett. 2024;132:070202. doi: 10.1103/PhysRevLett.132.070202. PubMed DOI

Bovino FA, et al. Direct measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 2005;95:240407. doi: 10.1103/PhysRevLett.95.240407. PubMed DOI

Rudnicki L, Horodecki P, Życzkowski K. Collective uncertainty entanglement test. Phys. Rev. Lett. 2011;107:150502. doi: 10.1103/PhysRevLett.107.150502. PubMed DOI

Rudnicki L, Puchała Z, Horodecki P, Życzkowski K. Collectibility for mixed quantum states. Phys. Rev. A. 2012;86:062329. doi: 10.1103/PhysRevA.86.062329. DOI

Bartkiewicz K, Chimczak G, Lemr K. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference. Phys. Rev. A. 2017;95:022331. doi: 10.1103/PhysRevA.95.022331. DOI

Bartkiewicz K, Lemr K, Černoch A, Miranowicz A. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A. 2017;95:030102. doi: 10.1103/PhysRevA.95.030102. DOI

Bartkiewicz K, Chimczak G. Two methods for measuring Bell nonlocality via local unitary invariants of two-qubit systems in Hong-Ou-Mandel interferometers. Phys. Rev. A. 2018;97:012107. doi: 10.1103/PhysRevA.97.012107. DOI

Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of a nonlinear entanglement witness by hyperentangling two-qubit states. Phys. Rev. A. 2018;98:032307. doi: 10.1103/PhysRevA.98.032307. DOI

Roik J, Bartkiewicz K, Černoch A, Lemr K. Accuracy of entanglement detection via artificial neural networks and human-designed entanglement witnesses. Phys. Rev. Appl. 2021;15:054006. doi: 10.1103/PhysRevApplied.15.054006. DOI

Roik J, Bartkiewicz K, Cernoch A, Lemr K. Entanglement quantification from collective measurements processed by machine learning. Phys. Lett. A. 2022;446:128270. doi: 10.1016/j.physleta.2022.128270. DOI

Sheng Y-B, Guo R, Pan J, Zhou L, Wang X-F. Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 2015;14:963–978. doi: 10.1007/s11128-015-0916-1. DOI

Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of the Hilbert–Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning. Phys. Rev. Lett. 2019;123:260501. doi: 10.1103/PhysRevLett.123.260501. PubMed DOI

Bartkiewicz K, Trávníček V, Lemr K. Measuring distances in Hilbert space by many-particle interference. Phys. Rev. A. 2019;99:032336. doi: 10.1103/PhysRevA.99.032336. DOI

Briegel H-J, Dür W, Cirac JI, Zoller P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 1998;81:5932–5935. doi: 10.1103/PhysRevLett.81.5932. DOI

Jacobs BC, Pittman TB, Franson JD. Quantum relays and noise suppression using linear optics. Phys. Rev. A. 2002;66:052307. doi: 10.1103/PhysRevA.66.052307. DOI

Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature. 2004;431:430–433. doi: 10.1038/nature02858. PubMed DOI

Barasiński A, Černoch A, Lemr K. Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 2019;122:170501. doi: 10.1103/PhysRevLett.122.170501. PubMed DOI

Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental diagnostics of entanglement swapping by a collective entanglement test. Phys. Rev. Appl. 2020;14:064071. doi: 10.1103/PhysRevApplied.14.064071. DOI

Zhou L, Sheng Y-B. Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A. 2014;90:024301. doi: 10.1103/PhysRevA.90.024301. DOI

Zhou L, Sheng Y-B. Concurrence measurement for the two-qubit optical and atomic states. Entropy. 2015;17:4293–4322. doi: 10.3390/e17064293. DOI

Feng S, He Y, Trivedi N. Detection of long-range entanglement in gapped quantum spin liquids by local measurements. Phys. Rev. A. 2022;106:042417. doi: 10.1103/PhysRevA.106.042417. DOI

Sheskin, D. J. Handbook of Parametric and Nonparametric Statistical Procedures 3rd edn. (Chapman and Hall/CRC, 2003).

Dekking, M., Frederik, Kraaikamp, C., Lopuhaä, H. P. & Meester, L. E. A Modern Introduction to Probability and Statistics: Understanding Why and How (Springer London, 2005).

Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena 2nd edn. (Springer, 1991).

Dotsenko IS, Korobka R. Entanglement swapping in the presence of white and color noise. Commun. Theor. Phys. 2018;69:143. doi: 10.1088/0253-6102/69/2/143. DOI

Ye T-Y. Robust quantum dialogue based on the entanglement swapping between any two logical bell states and the shared auxiliary logical bell state. Quantum Inf. Process. 2015;14:1469–1486. doi: 10.1007/s11128-015-0934-z. DOI

Lin J, Hwang T. Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 2013;12:1089–1107. doi: 10.1007/s11128-012-0456-x. DOI

Bej P, Ghosal A, Das D, Roy A, Bandyopadhyay S. Information-disturbance trade-off in generalized entanglement swapping. Phys. Rev. A. 2020;102:052416. doi: 10.1103/PhysRevA.102.052416. DOI

Jamiolkowski A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972;3:275–278. doi: 10.1016/0034-4877(72)90011-0. DOI

Badziag P, Horodecki M, Horodecki P, Horodecki R. Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A. 2000;62:012311. doi: 10.1103/PhysRevA.62.012311. DOI

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Jiráková K, Černoch A, Lemr K, Bartkiewicz K, Miranowicz A. Experimental hierarchy and optimal robustness of quantum correlations of two-qubit states with controllable white noise. Phys. Rev. A. 2021;104:062436. doi: 10.1103/PhysRevA.104.062436. DOI

Maziero J. Random sampling of quantum states: A survey of methods. Braz. J. Phys. 2015;45:575–583. doi: 10.1007/s13538-015-0367-2. DOI

Li C-K, Roberts R, Yin X. Decomposition of unitary matrices and quantum gates. Int. J. Quantum Inf. 2013;11:1350015. doi: 10.1142/S0219749913500159. DOI

Pozniak M, Zyczkowski K, Kus M. Composed ensembles of random unitary matrices. J. Phys. A. 1998;31:1059. doi: 10.1088/0305-4470/31/3/016. DOI

Johansson J, Nation P, Nori F. Qutip 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013;184:1234–1240. doi: 10.1016/j.cpc.2012.11.019. DOI

Qiskit contributors. Qiskit: An Open-source Framework for Quantum Computing. 10.5281/zenodo.2573505 (2023).

Bartkiewicz K, Horst B, Lemr K, Miranowicz A. Entanglement estimation from Bell inequality violation. Phys. Rev. A. 2013;88:052105. doi: 10.1103/PhysRevA.88.052105. DOI

Miranowicz A. Violation of Bell inequality and entanglement of decaying Werner states. Phys. Lett. A. 2004;327:272–283. doi: 10.1016/j.physleta.2004.05.001. DOI

Horodecki R, Horodecki P, Horodecki M. Violating Bell inequality by mixed spin- DOI

Bartkiewicz K, Lemr K, Miranowicz A. Direct method for measuring of purity, superfidelity, and subfidelity of photonic two-qubit mixed states. Phys. Rev. A. 2013;88:052104. doi: 10.1103/PhysRevA.88.052104. DOI

Quek Y, Fort S, Ng HK. Adaptive quantum state tomography with neural networks. NPJ Quantum Inf. 2021 doi: 10.1038/s41534-021-00436-9. DOI

Fernández, A. et al.Learning from Imbalanced Data Sets (2018).

Wen Z, Shi J, Li Q, He B, Chen J. ThunderSVM: A fast SVM library on GPUs and CPUs. J. Mach. Learn. Res. 2018;19:797–801.

Jiráková K, Cernoch A, Barasinski A, Lemr K. Digital supplement containing programming source code and data is accessible at the web pages. Figshare. 2023 doi: 10.6084/m9.figshare.25604676. DOI

Lemr K, Bartkiewicz K, Černoch A. Experimental measurement of collective nonlinear entanglement witness for two qubits. Phys. Rev. A. 2016;94:052334. doi: 10.1103/PhysRevA.94.052334. DOI

Morelli S, Huber M, Tavakoli A. Resource-efficient high-dimensional entanglement detection via symmetric projections. Phys. Rev. Lett. 2023;131:170201. doi: 10.1103/PhysRevLett.131.170201. PubMed DOI

Ren L-H, Shi Y-H, Chen J-J, Fan H. Multipartite entanglement detection based on the generalized state-dependent entropic uncertainty relation for multiple measurements. Phys. Rev. A. 2023;107:052617. doi: 10.1103/PhysRevA.107.052617. DOI

Aggarwal S, Adhikari S, Majumdar AS. Entanglement detection in arbitrary-dimensional bipartite quantum systems through partial realigned moments. Phys. Rev. A. 2024;109:012404. doi: 10.1103/PhysRevA.109.012404. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...