Enhancing collective entanglement witnesses through correlation with state purity
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
OP JAC CZ.02.01.01/00/22_008/0004596
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39013996
PubMed Central
PMC11252302
DOI
10.1038/s41598-024-65385-7
PII: 10.1038/s41598-024-65385-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This research analyzes the adverse impact of white noise on collective quantum measurements and argues that such noise poses a significant obstacle for the otherwise straightforward deployment of collective measurements in quantum communications. Our findings then suggests addressing this issue by correlating outcomes of these measurements with quantum state purity. To test the concept, a support vector machine is employed to boost the performance of several collective entanglement witnesses by incorporating state purity into the classification task of distinguishing entangled states from separable ones. Furthermore, the application of machine learning allows to optimize specificity of entanglement detection given a target value of sensitivity. A response operating characteristic curve is reconstructed based on this optimization and the area under curve calculated to assess the efficacy of the proposed model. Finally, we test the presented approach on an experimental dataset of Werner states.
Zobrazit více v PubMed
Rico A, Huber F. Entanglement detection with trace polynomials. Phys. Rev. Lett. 2024;132:070202. doi: 10.1103/PhysRevLett.132.070202. PubMed DOI
Bovino FA, et al. Direct measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 2005;95:240407. doi: 10.1103/PhysRevLett.95.240407. PubMed DOI
Rudnicki L, Horodecki P, Życzkowski K. Collective uncertainty entanglement test. Phys. Rev. Lett. 2011;107:150502. doi: 10.1103/PhysRevLett.107.150502. PubMed DOI
Rudnicki L, Puchała Z, Horodecki P, Życzkowski K. Collectibility for mixed quantum states. Phys. Rev. A. 2012;86:062329. doi: 10.1103/PhysRevA.86.062329. DOI
Bartkiewicz K, Chimczak G, Lemr K. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference. Phys. Rev. A. 2017;95:022331. doi: 10.1103/PhysRevA.95.022331. DOI
Bartkiewicz K, Lemr K, Černoch A, Miranowicz A. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A. 2017;95:030102. doi: 10.1103/PhysRevA.95.030102. DOI
Bartkiewicz K, Chimczak G. Two methods for measuring Bell nonlocality via local unitary invariants of two-qubit systems in Hong-Ou-Mandel interferometers. Phys. Rev. A. 2018;97:012107. doi: 10.1103/PhysRevA.97.012107. DOI
Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of a nonlinear entanglement witness by hyperentangling two-qubit states. Phys. Rev. A. 2018;98:032307. doi: 10.1103/PhysRevA.98.032307. DOI
Roik J, Bartkiewicz K, Černoch A, Lemr K. Accuracy of entanglement detection via artificial neural networks and human-designed entanglement witnesses. Phys. Rev. Appl. 2021;15:054006. doi: 10.1103/PhysRevApplied.15.054006. DOI
Roik J, Bartkiewicz K, Cernoch A, Lemr K. Entanglement quantification from collective measurements processed by machine learning. Phys. Lett. A. 2022;446:128270. doi: 10.1016/j.physleta.2022.128270. DOI
Sheng Y-B, Guo R, Pan J, Zhou L, Wang X-F. Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 2015;14:963–978. doi: 10.1007/s11128-015-0916-1. DOI
Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of the Hilbert–Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning. Phys. Rev. Lett. 2019;123:260501. doi: 10.1103/PhysRevLett.123.260501. PubMed DOI
Bartkiewicz K, Trávníček V, Lemr K. Measuring distances in Hilbert space by many-particle interference. Phys. Rev. A. 2019;99:032336. doi: 10.1103/PhysRevA.99.032336. DOI
Briegel H-J, Dür W, Cirac JI, Zoller P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 1998;81:5932–5935. doi: 10.1103/PhysRevLett.81.5932. DOI
Jacobs BC, Pittman TB, Franson JD. Quantum relays and noise suppression using linear optics. Phys. Rev. A. 2002;66:052307. doi: 10.1103/PhysRevA.66.052307. DOI
Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature. 2004;431:430–433. doi: 10.1038/nature02858. PubMed DOI
Barasiński A, Černoch A, Lemr K. Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 2019;122:170501. doi: 10.1103/PhysRevLett.122.170501. PubMed DOI
Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental diagnostics of entanglement swapping by a collective entanglement test. Phys. Rev. Appl. 2020;14:064071. doi: 10.1103/PhysRevApplied.14.064071. DOI
Zhou L, Sheng Y-B. Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A. 2014;90:024301. doi: 10.1103/PhysRevA.90.024301. DOI
Zhou L, Sheng Y-B. Concurrence measurement for the two-qubit optical and atomic states. Entropy. 2015;17:4293–4322. doi: 10.3390/e17064293. DOI
Feng S, He Y, Trivedi N. Detection of long-range entanglement in gapped quantum spin liquids by local measurements. Phys. Rev. A. 2022;106:042417. doi: 10.1103/PhysRevA.106.042417. DOI
Sheskin, D. J. Handbook of Parametric and Nonparametric Statistical Procedures 3rd edn. (Chapman and Hall/CRC, 2003).
Dekking, M., Frederik, Kraaikamp, C., Lopuhaä, H. P. & Meester, L. E. A Modern Introduction to Probability and Statistics: Understanding Why and How (Springer London, 2005).
Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena 2nd edn. (Springer, 1991).
Dotsenko IS, Korobka R. Entanglement swapping in the presence of white and color noise. Commun. Theor. Phys. 2018;69:143. doi: 10.1088/0253-6102/69/2/143. DOI
Ye T-Y. Robust quantum dialogue based on the entanglement swapping between any two logical bell states and the shared auxiliary logical bell state. Quantum Inf. Process. 2015;14:1469–1486. doi: 10.1007/s11128-015-0934-z. DOI
Lin J, Hwang T. Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 2013;12:1089–1107. doi: 10.1007/s11128-012-0456-x. DOI
Bej P, Ghosal A, Das D, Roy A, Bandyopadhyay S. Information-disturbance trade-off in generalized entanglement swapping. Phys. Rev. A. 2020;102:052416. doi: 10.1103/PhysRevA.102.052416. DOI
Jamiolkowski A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972;3:275–278. doi: 10.1016/0034-4877(72)90011-0. DOI
Badziag P, Horodecki M, Horodecki P, Horodecki R. Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A. 2000;62:012311. doi: 10.1103/PhysRevA.62.012311. DOI
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000).
Jiráková K, Černoch A, Lemr K, Bartkiewicz K, Miranowicz A. Experimental hierarchy and optimal robustness of quantum correlations of two-qubit states with controllable white noise. Phys. Rev. A. 2021;104:062436. doi: 10.1103/PhysRevA.104.062436. DOI
Maziero J. Random sampling of quantum states: A survey of methods. Braz. J. Phys. 2015;45:575–583. doi: 10.1007/s13538-015-0367-2. DOI
Li C-K, Roberts R, Yin X. Decomposition of unitary matrices and quantum gates. Int. J. Quantum Inf. 2013;11:1350015. doi: 10.1142/S0219749913500159. DOI
Pozniak M, Zyczkowski K, Kus M. Composed ensembles of random unitary matrices. J. Phys. A. 1998;31:1059. doi: 10.1088/0305-4470/31/3/016. DOI
Johansson J, Nation P, Nori F. Qutip 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013;184:1234–1240. doi: 10.1016/j.cpc.2012.11.019. DOI
Qiskit contributors. Qiskit: An Open-source Framework for Quantum Computing. 10.5281/zenodo.2573505 (2023).
Bartkiewicz K, Horst B, Lemr K, Miranowicz A. Entanglement estimation from Bell inequality violation. Phys. Rev. A. 2013;88:052105. doi: 10.1103/PhysRevA.88.052105. DOI
Miranowicz A. Violation of Bell inequality and entanglement of decaying Werner states. Phys. Lett. A. 2004;327:272–283. doi: 10.1016/j.physleta.2004.05.001. DOI
Horodecki R, Horodecki P, Horodecki M. Violating Bell inequality by mixed spin- DOI
Bartkiewicz K, Lemr K, Miranowicz A. Direct method for measuring of purity, superfidelity, and subfidelity of photonic two-qubit mixed states. Phys. Rev. A. 2013;88:052104. doi: 10.1103/PhysRevA.88.052104. DOI
Quek Y, Fort S, Ng HK. Adaptive quantum state tomography with neural networks. NPJ Quantum Inf. 2021 doi: 10.1038/s41534-021-00436-9. DOI
Fernández, A. et al.Learning from Imbalanced Data Sets (2018).
Wen Z, Shi J, Li Q, He B, Chen J. ThunderSVM: A fast SVM library on GPUs and CPUs. J. Mach. Learn. Res. 2018;19:797–801.
Jiráková K, Cernoch A, Barasinski A, Lemr K. Digital supplement containing programming source code and data is accessible at the web pages. Figshare. 2023 doi: 10.6084/m9.figshare.25604676. DOI
Lemr K, Bartkiewicz K, Černoch A. Experimental measurement of collective nonlinear entanglement witness for two qubits. Phys. Rev. A. 2016;94:052334. doi: 10.1103/PhysRevA.94.052334. DOI
Morelli S, Huber M, Tavakoli A. Resource-efficient high-dimensional entanglement detection via symmetric projections. Phys. Rev. Lett. 2023;131:170201. doi: 10.1103/PhysRevLett.131.170201. PubMed DOI
Ren L-H, Shi Y-H, Chen J-J, Fan H. Multipartite entanglement detection based on the generalized state-dependent entropic uncertainty relation for multiple measurements. Phys. Rev. A. 2023;107:052617. doi: 10.1103/PhysRevA.107.052617. DOI
Aggarwal S, Adhikari S, Majumdar AS. Entanglement detection in arbitrary-dimensional bipartite quantum systems through partial realigned moments. Phys. Rev. A. 2024;109:012404. doi: 10.1103/PhysRevA.109.012404. DOI