Synergic quantum generative machine learning

. 2023 Aug 09 ; 13 (1) : 12893. [epub] 20230809

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37558715

Grantová podpora
No.19-19002S Grantová Agentura České Republiky
No. CZ.02.1.01./0.0/0.0/16_019/0000754 Ministerstvo Školství, Mládeže a Tělovýchovy
No. DEC-2019/34/A/ST2/00081 Narodowe Centrum Nauki
DSGC-2021-0026 Univerzita Palackého v Olomouci

Odkazy

PubMed 37558715
PubMed Central PMC10412646
DOI 10.1038/s41598-023-40137-1
PII: 10.1038/s41598-023-40137-1
Knihovny.cz E-zdroje

We introduce a new approach towards generative quantum machine learning significantly reducing the number of hyperparameters and report on a proof-of-principle experiment demonstrating our approach. Our proposal depends on collaboration between the generators and discriminator, thus, we call it quantum synergic generative learning. We present numerical evidence that the synergic approach, in some cases, compares favorably to recently proposed quantum generative adversarial learning. In addition to the results obtained with quantum simulators, we also present experimental results obtained with an actual programmable quantum computer. We investigate how a quantum computer implementing generative learning algorithm could learn the concept of a maximally-entangled state. After completing the learning process, the network is able both to recognize and to generate an entangled state. Our approach can be treated as one possible preliminary step to understanding how the concept of quantum entanglement can be learned and demonstrated by a quantum computer.

Zobrazit více v PubMed

Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. MIT Press; 2012.

Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemp. Phys. 2015;56:172. doi: 10.1080/00107514.2014.964942. DOI

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017;549:195. doi: 10.1038/nature23474. PubMed DOI

Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, Wossnig L. Quantum machine learning: A classical perspective. Proc. R. Soc. A. 2018;474:20170551. doi: 10.1098/rspa.2017.0551. PubMed DOI PMC

Dunjko V, Briegel HJ. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018;81:074001. doi: 10.1088/1361-6633/aab406. PubMed DOI

Pepper A, Tischler N, Pryde GJ. Experimental realization of a quantum autoencoder: The compression of qutrits via machine learning. Phys. Rev. Lett. 2019;122:060501. doi: 10.1103/PhysRevLett.122.060501. PubMed DOI

Carleo, G. et al. Machine learning and the physical sciences. http://arxiv.org/abs/1903.10563 (2019).

Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L, Liu N-L, Lu C-Y, Pan J-W. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015;114:110504. doi: 10.1103/PhysRevLett.114.110504. PubMed DOI

Chatterjee R, Yu T. Generalized coherent states, reproducing kernels, and quantum support vector machines. Quant. Inf. Commun. 2017;17:1292. doi: 10.26421/qic17.15-16. DOI

Gao J, Qiao L-F, Jiao Z-Q, Ma Y-C, Hu C-Q, Ren R-J, Yang A-L, Tang H, Yung M-H, Jin X-M. Experimental machine learning of quantum states. Phys. Rev. Lett. 2018;120:240501. doi: 10.1103/PhysRevLett.120.240501. PubMed DOI

Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014;113:130503. doi: 10.1103/PhysRevLett.113.130503. PubMed DOI

Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019;122:040504. doi: 10.1103/PhysRevLett.122.040504. PubMed DOI

Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of the Hilbert–Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning. Phys. Rev. Lett. 2019;123:260501. doi: 10.1103/PhysRevLett.123.260501. PubMed DOI

McMahon PL, Marandi A, Haribara Y, Hamerly R, Langrock C, Tamate S, Inagaki T, Takesue H, Utsunomiya S, Aihara K, Byer RL, Fejer MM, Mabuchi H, Yamamoto Y. A fully programmable 100-spin coherent ising machine with all-to-all connections. Science. 2016;354:614. doi: 10.1126/science.aah5178. PubMed DOI

Pierangeli D, Marcucci G, Conti C. Large-scale photonic ising machine by spatial light modulation. Phys. Rev. Lett. 2019;122:213902. doi: 10.1103/PhysRevLett.122.213902. PubMed DOI

Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D, et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 2017;11:441. doi: 10.1038/nphoton.2017.93. DOI

Bueno J, Maktoobi S, Froehly L, Fischer I, Jacquot M, Larger L, Brunner D. Reinforcement learning in a large-scale photonic recurrent neural network. Optica. 2018;5:756. doi: 10.1364/OPTICA.5.000756. DOI

Tacchino F, Macchiavello C, Gerace D, Bajoni D. An artificial neuron implemented on an actual quantum processor. NPJ Quant. Inf. 2019;5:26. doi: 10.1038/s41534-019-0140-4. DOI

Kak SC. Quantum Neural Computing, Advances in Imaging and Electron Physics. Elsevier; 1995. p. 259.

Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors (2018). http://arxiv.org/abs/1802.06002 (2018).

Li Z, Liu X, Xu N, Du J. Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 2015;114:140504. doi: 10.1103/PhysRevLett.114.140504. PubMed DOI

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM. Supervised learning with quantum-enhanced feature spaces. Nature. 2019;567:209. doi: 10.1038/s41586-019-0980-2. PubMed DOI

Kandala A, Temme K, Córcoles AD, Mezzacapo A, Chow JM, Gambetta JM. Error mitigation extends the computational reach of a noisy quantum processor. Nature. 2019;567:491. doi: 10.1038/s41586-019-1040-7. PubMed DOI

Dunjko V, Ge Y, Cirac JI. Computational speedups using small quantum devices. Phys. Rev. Lett. 2018;121:250501. doi: 10.1103/PhysRevLett.121.250501. PubMed DOI

Li Y, Benjamin SC. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X. 2017;7:021050. doi: 10.1103/PhysRevX.7.021050. DOI

Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. doi: 10.22331/q-2018-08-06-79. DOI

Fujii K, Nakajima K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 2017;8:024030. doi: 10.1103/PhysRevApplied.8.024030. DOI

Lloyd S, Weedbrook C. Quantum generative adversarial learning. Phys. Rev. Lett. 2018;121:040502. doi: 10.1103/PhysRevLett.121.040502. PubMed DOI

Dallaire-Demers P-L, Killoran N. Quantum generative adversarial networks. Phys. Rev. A. 2018;98:012324. doi: 10.1103/PhysRevA.98.012324. DOI

Zoufal C, Lucchi A, Woerner S. Quantum generative adversarial networks for learning and loading random distributions. NPJ Quant. Inf. 2019;5:1.

Mitarai K, Negoro M, Kitagawa M, Fujii K. Quantum circuit learning. Phys. Rev. A. 2018;98:032309. doi: 10.1103/PhysRevA.98.032309. DOI

Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A. 2019;99:032331. doi: 10.1103/PhysRevA.99.032331. DOI

Jašek J, Jiráková K, Bartkiewicz K, Černoch A, Fürst T, Lemr K. Experimental hybrid quantum-classical reinforcement learning by boson sampling: How to train a quantum cloner. Opt. Express. 2019;27:32454. doi: 10.1364/OE.27.032454. PubMed DOI

Möttönen M, Vartiainen JJ, Bergholm V, Salomaa MM. Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 2005;5:467–473.

Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242. doi: 10.1038/nature23879. PubMed DOI

Barenco A, Berthiaume A, Deutsch D, Ekert A, Jozsa R, Macchiavello C. Stabilization of quantum computations by symmetrization. SIAM J. Comput. 1997;26:1541. doi: 10.1137/S0097539796302452. DOI

IBM Quantum. https://quantum-computing.ibm.com/ (2021).

Qiskit Contributors. Qiskit: An open-source framework for quantum computing. 10.5281/zenodo.2573505 (2023).

Knop S, Mazur M, Spurek P, Tabor J, Podolak I. Generative models with kernel distance in data space. Neurocomputing. 2022;487:119–129. doi: 10.1016/j.neucom.2022.02.053. DOI

Barnett SM, Croke S. Quantum state discrimination. Adv. Opt. Photon. 2009;1:238. doi: 10.1364/AOP.1.000238. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...