Synergic quantum generative machine learning
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No.19-19002S
Grantová Agentura České Republiky
No. CZ.02.1.01./0.0/0.0/16_019/0000754
Ministerstvo Školství, Mládeže a Tělovýchovy
No. DEC-2019/34/A/ST2/00081
Narodowe Centrum Nauki
DSGC-2021-0026
Univerzita Palackého v Olomouci
PubMed
37558715
PubMed Central
PMC10412646
DOI
10.1038/s41598-023-40137-1
PII: 10.1038/s41598-023-40137-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We introduce a new approach towards generative quantum machine learning significantly reducing the number of hyperparameters and report on a proof-of-principle experiment demonstrating our approach. Our proposal depends on collaboration between the generators and discriminator, thus, we call it quantum synergic generative learning. We present numerical evidence that the synergic approach, in some cases, compares favorably to recently proposed quantum generative adversarial learning. In addition to the results obtained with quantum simulators, we also present experimental results obtained with an actual programmable quantum computer. We investigate how a quantum computer implementing generative learning algorithm could learn the concept of a maximally-entangled state. After completing the learning process, the network is able both to recognize and to generate an entangled state. Our approach can be treated as one possible preliminary step to understanding how the concept of quantum entanglement can be learned and demonstrated by a quantum computer.
Zobrazit více v PubMed
Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. MIT Press; 2012.
Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemp. Phys. 2015;56:172. doi: 10.1080/00107514.2014.964942. DOI
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017;549:195. doi: 10.1038/nature23474. PubMed DOI
Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, Wossnig L. Quantum machine learning: A classical perspective. Proc. R. Soc. A. 2018;474:20170551. doi: 10.1098/rspa.2017.0551. PubMed DOI PMC
Dunjko V, Briegel HJ. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018;81:074001. doi: 10.1088/1361-6633/aab406. PubMed DOI
Pepper A, Tischler N, Pryde GJ. Experimental realization of a quantum autoencoder: The compression of qutrits via machine learning. Phys. Rev. Lett. 2019;122:060501. doi: 10.1103/PhysRevLett.122.060501. PubMed DOI
Carleo, G. et al. Machine learning and the physical sciences. http://arxiv.org/abs/1903.10563 (2019).
Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L, Liu N-L, Lu C-Y, Pan J-W. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015;114:110504. doi: 10.1103/PhysRevLett.114.110504. PubMed DOI
Chatterjee R, Yu T. Generalized coherent states, reproducing kernels, and quantum support vector machines. Quant. Inf. Commun. 2017;17:1292. doi: 10.26421/qic17.15-16. DOI
Gao J, Qiao L-F, Jiao Z-Q, Ma Y-C, Hu C-Q, Ren R-J, Yang A-L, Tang H, Yung M-H, Jin X-M. Experimental machine learning of quantum states. Phys. Rev. Lett. 2018;120:240501. doi: 10.1103/PhysRevLett.120.240501. PubMed DOI
Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014;113:130503. doi: 10.1103/PhysRevLett.113.130503. PubMed DOI
Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019;122:040504. doi: 10.1103/PhysRevLett.122.040504. PubMed DOI
Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental measurement of the Hilbert–Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning. Phys. Rev. Lett. 2019;123:260501. doi: 10.1103/PhysRevLett.123.260501. PubMed DOI
McMahon PL, Marandi A, Haribara Y, Hamerly R, Langrock C, Tamate S, Inagaki T, Takesue H, Utsunomiya S, Aihara K, Byer RL, Fejer MM, Mabuchi H, Yamamoto Y. A fully programmable 100-spin coherent ising machine with all-to-all connections. Science. 2016;354:614. doi: 10.1126/science.aah5178. PubMed DOI
Pierangeli D, Marcucci G, Conti C. Large-scale photonic ising machine by spatial light modulation. Phys. Rev. Lett. 2019;122:213902. doi: 10.1103/PhysRevLett.122.213902. PubMed DOI
Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D, et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 2017;11:441. doi: 10.1038/nphoton.2017.93. DOI
Bueno J, Maktoobi S, Froehly L, Fischer I, Jacquot M, Larger L, Brunner D. Reinforcement learning in a large-scale photonic recurrent neural network. Optica. 2018;5:756. doi: 10.1364/OPTICA.5.000756. DOI
Tacchino F, Macchiavello C, Gerace D, Bajoni D. An artificial neuron implemented on an actual quantum processor. NPJ Quant. Inf. 2019;5:26. doi: 10.1038/s41534-019-0140-4. DOI
Kak SC. Quantum Neural Computing, Advances in Imaging and Electron Physics. Elsevier; 1995. p. 259.
Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors (2018). http://arxiv.org/abs/1802.06002 (2018).
Li Z, Liu X, Xu N, Du J. Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 2015;114:140504. doi: 10.1103/PhysRevLett.114.140504. PubMed DOI
Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM. Supervised learning with quantum-enhanced feature spaces. Nature. 2019;567:209. doi: 10.1038/s41586-019-0980-2. PubMed DOI
Kandala A, Temme K, Córcoles AD, Mezzacapo A, Chow JM, Gambetta JM. Error mitigation extends the computational reach of a noisy quantum processor. Nature. 2019;567:491. doi: 10.1038/s41586-019-1040-7. PubMed DOI
Dunjko V, Ge Y, Cirac JI. Computational speedups using small quantum devices. Phys. Rev. Lett. 2018;121:250501. doi: 10.1103/PhysRevLett.121.250501. PubMed DOI
Li Y, Benjamin SC. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X. 2017;7:021050. doi: 10.1103/PhysRevX.7.021050. DOI
Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. doi: 10.22331/q-2018-08-06-79. DOI
Fujii K, Nakajima K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 2017;8:024030. doi: 10.1103/PhysRevApplied.8.024030. DOI
Lloyd S, Weedbrook C. Quantum generative adversarial learning. Phys. Rev. Lett. 2018;121:040502. doi: 10.1103/PhysRevLett.121.040502. PubMed DOI
Dallaire-Demers P-L, Killoran N. Quantum generative adversarial networks. Phys. Rev. A. 2018;98:012324. doi: 10.1103/PhysRevA.98.012324. DOI
Zoufal C, Lucchi A, Woerner S. Quantum generative adversarial networks for learning and loading random distributions. NPJ Quant. Inf. 2019;5:1.
Mitarai K, Negoro M, Kitagawa M, Fujii K. Quantum circuit learning. Phys. Rev. A. 2018;98:032309. doi: 10.1103/PhysRevA.98.032309. DOI
Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A. 2019;99:032331. doi: 10.1103/PhysRevA.99.032331. DOI
Jašek J, Jiráková K, Bartkiewicz K, Černoch A, Fürst T, Lemr K. Experimental hybrid quantum-classical reinforcement learning by boson sampling: How to train a quantum cloner. Opt. Express. 2019;27:32454. doi: 10.1364/OE.27.032454. PubMed DOI
Möttönen M, Vartiainen JJ, Bergholm V, Salomaa MM. Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 2005;5:467–473.
Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242. doi: 10.1038/nature23879. PubMed DOI
Barenco A, Berthiaume A, Deutsch D, Ekert A, Jozsa R, Macchiavello C. Stabilization of quantum computations by symmetrization. SIAM J. Comput. 1997;26:1541. doi: 10.1137/S0097539796302452. DOI
IBM Quantum. https://quantum-computing.ibm.com/ (2021).
Qiskit Contributors. Qiskit: An open-source framework for quantum computing. 10.5281/zenodo.2573505 (2023).
Knop S, Mazur M, Spurek P, Tabor J, Podolak I. Generative models with kernel distance in data space. Neurocomputing. 2022;487:119–129. doi: 10.1016/j.neucom.2022.02.053. DOI
Barnett SM, Croke S. Quantum state discrimination. Adv. Opt. Photon. 2009;1:238. doi: 10.1364/AOP.1.000238. DOI