Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use

. 2020 Mar ; 6 () : e19. [epub] 20200708

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32714567

Levosimendan was first approved for clinic use in 2000, when authorisation was granted by Swedish regulatory authorities for the haemodynamic stabilisation of patients with acutely decompensated chronic heart failure. In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitisation and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced heart failure, right ventricular failure and pulmonary hypertension, cardiac surgery, critical care and emergency medicine. Levosimendan is currently in active clinical evaluation in the US. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and non-cardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, UK and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute heart failure arena in recent times and charts a possible development trajectory for the next 20 years.

2nd Department of Cardiology Attikon University Hospital National and Kapodistrian University of Athens Athens Greece

Advanced Heart Failure and Transplantation Centre Department of Cardiology University Clinical Centre Ljubljana Slovenia

Anaesthesia and Intensive Care Division San Camillo Forlanini Hospital Rome Italy

Cardiology Department Centro Hospitalar Universitario Lisboa Norte CCUI Faculdade de Medicina Universidade de Lisboa Lisbon Portugal

Cardiothoracic Anaesthesiology and Intensive Care Department of Anaesthesiology and Intensive Care Medicine Institute for Clinical and Experimental Medicine Prague Czech Republic

Complexo Hospitalario Universitario A Coruña La Coruña Spain

Critical Care Proprietary Products Orion Pharma Espoo Finland

Department of Anaesthesiology and Critical Care Medicine AP HP Saint Louis and Lariboisière University Hospitals Paris France

Department of Anaesthesiology and Intensive Care Medicine Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine Medical University of Graz Graz Austria

Department of Anaesthesiology and Intensive Care Medicine Medical University of Graz Graz Austria

Department of Anaesthesiology and Intensive Care Medicine University of Lübeck Lübeck Germany

Department of Anaesthesiology and Intensive Care Sahlgrenska University Hospital Gothenburg Sweden

Department of Anaesthesiology Perioperative Medicine and Intensive Care Masaryk Hospital J E Purkinje University Usti nad Labem Czech Republic

Department of Anaesthesiology Reanimatology and Intensive Care University Hospital Centre Zagreb Croatia

Department of Anaesthesiology University Hospital Ghent Belgium

Department of Cardiac Intensive Care Petrovskii National Research Centre of Surgery Sechenov University Moscow Russia

Department of Cardiology and Internal Medicine Nicolaus Copernicus University Torun Poland

Department of Cardiology Campus Virchow Klinikum Charité University Medicine Berlin Berlin Germany

Department of Cardiology Faculty of Medicine University of Debrecen Debrecen Hungary

Department of Cardiology Medical School University of Cyprus Nicosia Cyprus

Department of Cardiology Myokardiale Energetik und Metabolismus Research Unit Medical University of Graz Graz Austria

Department of Cardiology Niguarda Ca'Granda Hospital Milan Italy

Department of Cardiology North Estonia Medical Centre Tallinn Estonia

Department of Cardiology Oslo University Hospital Ullevaal Oslo Norway

Department of Cardiovascular Respiratory Nephrology Anaesthesiology and Geriatric Sciences La Sapienza University of Rome Rome Italy

Department of Clinical Sciences and Community Health Centro Cardiologico Monzino IRCCS Milan Italy

Department of Intensive Care Hôpital Erasme Brussels Belgium

Department of Intensive Care Medicine Amsterdam UMC Amsterdam the Netherlands

Department of Internal Medicine 3 Cardiology and Angiology Medical University of Innsbruck Innsbruck Austria

Department of Medicine Spittal Limmattal Schlieren Switzerland

Department of Surgery School of Medicine University of Santiago de Compostela Santiago de Compostela Spain

Departments of Cardiology and Transplantation Sahlgrenska University Hospital Gothenburg Sweden

Dipartimento di Anestesia e Terapie Intensive Azienda Ospedaliero Universitaria Pisana Pisa Italy

Emergency Cardiology Department National Scientific Centre MD Strazhesko Institute of Cardiology Kiev Ukraine

Emergency Medicine Meilahti Central University Hospital University of Helsinki Helsinki Finland

Global Medical Affairs R and D Orion Pharma Espoo Finland

Heart Diseases Institute Hospital Universitari de Bellvitge Barcelona Spain

Heart Failure and Transplant Program Cardiology Department University Hospital 12 Octubre Madrid Spain

Heart Failure Clinic São Francisco Xavier Hospital CHLO Lisbon Portugal

Institute of Anaesthesiology University Hospital of Zurich Zurich Switzerland

Institute of Medical Sciences Uppsala University Uppsala Sweden

Intensive Care Department Consorci Sanitari Integral University of Barcelona Barcelona Spain

Intensive Care Unit National Health Service Leeds UK

Klinik für Innere Medizin 3 Kardiologie Universitätsklinikum Schleswig Holstein Kiel Germany

Lomonosov Moscow State University Medical Centre Moscow Russia

Medizinische Klinik 2 Klinikum Weiden Teaching Hospital of University of Regensburg Weiden Germany

MTA SZTE Research Group of Cardiovascular Pharmacology Hungarian Academy of Sciences University of Szeged Szeged Hungary

Statistical Services R and D Orion Pharma Espoo Finland

Struttura Complessa di Anestesia 1 Policlinico di Modena Modena Italy

Sydäntutkimussäätiö Helsinki Finland

Zobrazit více v PubMed

Beregovich J, Bianchi C, D’Angelo R et al. Haemodynamic effects of a new inotropic agent (dobutamine) in chronic cardiac failure. Br Heart J. 1975;37:629–34. doi: 10.1136/hrt.37.6.629. PubMed DOI PMC

Fabiato A, Fabiato F. Calcium and cardiac excitation-contraction coupling. Ann Rev Physiol. 1979;41:473–84. doi: 10.1146/annurev.ph.41.030179.002353. PubMed DOI

Wohlfart B, Noble MI. The cardiac excitation-contraction cycle. Pharmacol Ther. 1982;16:1–43. doi: 10.1016/0163-7258(82)90030-4. PubMed DOI

Colucci WS, Wright RF, Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 1. N Engl J Med. 1986;314:290–9. doi: 10.1056/NEJM198602063140605. PubMed DOI

Maskin CS, Sinoway L, Chadwick B et al. Sustained hemodynamic and clinical effects of a new cardiotonic agent, WIN 47203, in patients with severe congestive heart failure. Circulation. 1983;67:1065–70. doi: 10.1161/01.cir.67.5.1065. PubMed DOI

Dage RC, Roebel LE, Hsieh CP et al. Cardiovascular properties of a new cardiotonic agent: MDL 17,043 (1.3-dihydro-4-methyl-5-[4-(methylthio)-benzoyl]-2H-imidazol-2-one) J Cardiovasc Pharmacol. 1982;4:500–8. PubMed

Nagy L, Pollesello P, Papp Z. Inotropes and inodilators for acute heart failure: sarcomere active drugs in focus. J Cardiovasc Pharmacol. 2014;64:199–208. doi: 10.1097/FJC.0000000000000113. PubMed DOI PMC

Herzig JW, Feile K, Rüegg JC. Activating effects of AR-L 115 BS on the Ca2+ sensitive force, stiffness and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle. Arzneimittelforschung. 1981;31:188–91. PubMed

Solaro RJ, Rüegg JC. Stimulation of Ca++ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ Res. 1982;51:290–4. PubMed

Rüegg JC, Pfitzer G, Eubler D et al. Effect on contractility of skinned fibres from mammalian heart and smooth muscle by a new benzimidazole derivative, 4,5-dihydro-6-[2-(4-methoxyphenyl)-1H-benzimidazol-5-yl]-5-methyl-3(2H)-pyridazinone. Arzneimittelforschung. 1984;34:1736–8. PubMed

Raasmaja A, Talo A, Haikala H et al. Biochemical properties of OR-1259: a positive inotropic and vasodilatory compound with an antiarrhythmic effect. Adv Exp Med Biol. 1992;311:423. doi: 10.1007/978-1-4615-3362-7_63. PubMed DOI

Haikala H, Kaivola J, Nissinen E et al. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol. 1995;27:1859–66. doi: 10.1007/978-1-4615-3362-7_63. PubMed DOI

Pollesello P, Ovaska M, Kaivola J et al. Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J Biol Chem. 1994;269:28584–90. PubMed

Pääkkönen K, Annila A, Sorsa T et al. Solution structure and main chain dynamics of the regulatory domain (residues 1-91) of human cardiac troponin C. J Biol Chem. 1998;273:15633–8. doi: 10.1074/jbc.273.25.15633. PubMed DOI

Haikala H, Linden IB. Mechanisms of action of calcium-sensitizing drugs. J Cardiovasc Pharmacol. 1995;26((Suppl 1)):S10–9. PubMed

Sorsa T, Pollesello P, Solaro RJ. The contractile apparatus as a target for drugs against heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin C. Mol Cell Biochem. 2004;266:87–107. doi: 10.1023/b:mcbi.0000049141.37823.19. PubMed DOI

Haikala H, Pollesello P. Calcium sensitivity enhancers. iDrugs. 2000;3:1199–205. PubMed

Sorsa T, Heikkinen S, Abbott MB et al. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J Biol Chem. 2001;276:9337–43. doi: 10.1074/jbc.M007484200. PubMed DOI

Levijoki J, Pollesello P, Kaivola J et al. Further evidence for the cardiac troponin C mediated calcium sensitization by levosimendan: structure-response and binding analysis with analogs of levosimendan. J Mol Cell Cardiol. 2000;32:479–91. doi: 10.1006/jmcc.1999.1093. PubMed DOI

Pineda-Sanabria SE, Robertson IM, Sun YB et al. Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. J Mol Cell Cardiol. 2016;92:174–84. doi: 10.1016/j.yjmcc.2016.02.003. PubMed DOI PMC

Lindert S, Li MX, Sykes BD et al. Computer-aided drug discovery approach finds calcium sensitizer of cardiac troponin. Chem Biol Drug Des. 2015;85:99–106. doi: 10.1111/cbdd.12381. PubMed DOI PMC

Robertson IM, Sun YB, Li MX et al. A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J Mol Cell Cardiol. 2010;49:1031–41. doi: 10.1016/j.yjmcc.2010.08.019. PubMed DOI PMC

Yokoshiki H, Katsube Y, Sunagawa M et al. Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide-sensitive K+ channel in rat arterial myocytes. Eur J Pharmacol. 1997;333:249–59. doi: 10.1152/ajpheart.00318.2005. PubMed DOI

Pagel PS, Hettrick DA, Warltier DC. Influence of levosimendan, pimobendan, and milrinone on the regional distribution of cardiac output in anaesthetized dogs. Br J Pharmacol. 1996;119:609–15. doi: 10.1111/j.1476-5381.1996.tb15716.x. PubMed DOI PMC

Kopustinskiene DM, Pollesello P, Saris NE. Potassium-specific effects of levosimendan on heart mitochondria. Biochem Pharmacol. 2004;68:807–12. doi: 10.1016/j.bcp.2004.05.018. PubMed DOI

Kopustinskiene DM, Pollesello P, Saris NE. Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol. 2001;428:311–4. doi: 10.1016/s0014-2999(01)01350-4. PubMed DOI

Maytin M, Colucci WS. Cardioprotection: a new paradigm in the management of acute heart failure syndromes. Am J Cardiol. 2005;96:26G–31G. doi: 10.1016/j.amjcard.2005.07.018. PubMed DOI

Nieminen MS, Pollesello P, Vajda G et al. Effects of levosimendan on the energy balance: preclinical and clinical evidence. J Cardiovasc Pharmacol. 2009;53:302–10. doi: 10.1097/FJC.0b013e31819c9a17. PubMed DOI

Metzsch C, Linnér R, Steen S et al. Levosimendan cardioprotection in acutely beta-1 adrenergic receptor blocked open chest pigs. Acta Anaesthesiol Scand. 2010;54:103–10. doi: 10.1111/j.1399-6576.2009.02070.x. PubMed DOI

Papp JG, Pollesello P, Varró AF et al. Effect of levosimendan and milrinone on regional myocardial ischemia/reperfusion-induced arrhythmias in dogs. J Cardiovasc Pharmacol Ther. 2006;11:129–35. doi: 10.1177/1074248406289286. PubMed DOI

du Toit EF, Genis A, Opie LH et al. A role for the RISK pathway and K(ATP) channels in pre- and post-conditioning induced by levosimendan in the isolated guinea pig heart. Br J Pharmacol. 2008;154:41–50. doi: 10.1038/bjp.2008.52. PubMed DOI PMC

Tritapepe L, De Santis V, Vitale D et al. Levosimendan pre-treatment improves outcomes in patients undergoing coronary artery bypass graft surgery. Br J Anaesth. 2009;102:198–204. doi: 10.1093/bja/aen367. PubMed DOI

Takahashi R, Talukder MA, Endoh M. Inotropic effects of OR-1896, an active metabolite of levosimendan, on canine ventricular myocardium. Eur J Pharmacol. 2000;400:103–12. doi: 10.1016/s0014-2999(00)00385-x. PubMed DOI

Takahashi R, Talukder MA, Endoh M. Effects of OR-1896, an active metabolite of levosimendan, on contractile force and aequorin light transients in intact rabbit ventricular myocardium. J Cardiovasc Pharmacol. 2000;36:118–25. doi: 10.1097/00005344-200007000-00016. PubMed DOI

Erdei N, Papp Z, Pollesello P et al. The levosimendan metabolite OR-1896 elicits vasodilation by activating the K(ATP) and BK(Ca) channels in rat isolated arterioles. Br J Pharmacol. 2006;148:696–702. doi: 10.1038/sj.bjp.0706781. PubMed DOI PMC

Kivikko M, Antila S, Eha J et al. Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure. Int J Clin Pharm Ther. 2002;40:465–71. doi: 10.5414/cpp40465. PubMed DOI

Farmakis D, Alvarez J, Gal TB et al. Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: an expert panel position paper. Int J Cardiol. 2016;222:303–12. doi: 10.1016/j.ijcard.2016.07.202. PubMed DOI

Szilágyi S, Pollesello P, Levijoki J et al. The effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and phosphodiesterase enzymes of the guinea pig. Eur J Pharmacol. 2004;486:67–74. doi: 10.1016/j.ejphar.2003.12.005. PubMed DOI

de Cheffoy de Courcelles D, de Loore K, Freyne E, Janssen PA. Inhibition of human cardiac cyclic AMP-phosphodiesterases by R 80122, a new selective cyclic AMP-phosphodiesterase III inhibitor: a comparison with other cardiotonic compounds. J Pharmacol Exp Ther. 1992;263:6–14. PubMed

Szilagyi S, Pollesello P, Levijoki J et al. Two inotropes with different mechanisms of action: contractile, PDE-inhibitory and direct myofibrillar effects of levosimendan and enoximone. J Cardiovasc Pharmacol. 2005;46:369–76. doi: 10.1097/01.fjc.0000175454.69116.9. PubMed DOI

Hasenfuss G, Pieske B, Castell M et al. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation. 1998;98:2141–7. doi: 10.1161/01.cir.98.20.2141. PubMed DOI

Kaheinen P, Pollesello P, Levijoki J et al. Effects of levosimendan and milrinone on oxygen consumption in isolated guinea-pig heart. J Cardiovasc Pharmacol. 2004;43:555–61. doi: 10.1097/00005344-200404000-00011. PubMed DOI

Maack C, Eschenhagen T, Hamdani N et al. Treatments targeting inotropy: a position paper of the Committees on Translational Research and Acute Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2019;40:3626–44. doi: 10.1093/eurheartj/ehy600. PubMed DOI PMC

Xanthos T, Bassiakou E, Koudouna E et al. Combination pharmacotherapy in the treatment of experimental cardiac arrest. Am J Emerg Med. 2009;27:651–9. doi: 10.1016/j.ajem.2008.05.004. PubMed DOI

Lochner A, Colesky F, Genade S. Effect of a calcium-sensitizing agent, levosimendan, on the postcardioplegic inotropic response of the myocardium. Cardiovasc Drugs Ther. 2000;14:271–81. doi: 10.1023/a:1007878523663. PubMed DOI

Antila S, Eha J, Heinpalu M et al. Haemodynamic interactions of a new calcium sensitizing drug levosimendan and captopril. Eur J Clin Pharmacol. 1996;49:451–8. doi: 10.1007/bf00195930. PubMed DOI

Sundberg S, Lilleberg J, Nieminen MS et al. Hemodynamic and neurohumoral effects of levosimendan, a new calcium sensitizer, at rest and during exercise in healthy men. Am J Cardiol. 1995;75:1061–6. doi: 10.1016/s0002-9149(99)80725-5. PubMed DOI

Lilleberg J, Sundberg S, Nieminen MS. Dose-range study of a new calcium sensitizer, levosimendan, in patients with left ventricular dysfunction. J Cardiovasc Pharmacol. 1995;26(Suppl 1):S63–9. PubMed

Ukkonen H, Saraste M, Akkila J et al. Myocardial efficiency during levosimendan infusion in congestive heart failure. Clin Pharmacol Ther. 2000;68:522–31. doi: 10.1067/mcp.2000.110972. PubMed DOI

Lilleberg J, Nieminen MS, Akkila J et al. Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J. 1998;19:660–8. doi: 10.1053/euhj.1997.0806. PubMed DOI

Ukkonen H, Saraste M, Akkila J et al. Myocardial efficiency during calcium sensitization with levosimendan: a noninvasive study with positron emission tomography and echocardiography in healthy volunteers. Clin Pharmacol Ther. 1997;61:596–607. doi: 10.1016/S0009-9236(97)90139-9. PubMed DOI

Nieminen MS, Akkila J, Hasenfuss G et al. Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol. 2000;36:1903–12. doi: 10.1016/s0735-1097(00)00961-x. PubMed DOI

Jörgensen K, Bech-Hanssen O, Houltz E et al. Effects of levosimendan on left ventricular relaxation and early filling at maintained preload and afterload conditions after aortic valve replacement for aortic stenosis. Circulation. 2008;117:1075–81. doi: 10.1161/CIRCULATIONAHA.107.722868. PubMed DOI

Fredholm M, Jörgensen K, Houltz E et al. Inotropic and lusitropic effects of levosimendan and milrinone assessed by strain echocardiography: a randomised trial. Acta Anaesthesiol Scand. 2018;62:1246–54. doi: 10.1111/aas.13170. PubMed DOI

Parissis JT, Paraskevaidis I, Bistola V et al. Effects of levosimendan on right ventricular function in patients with advanced heart failure. Am J Cardiol. 2006;98:1489–92. doi: 10.1016/j.amjcard.2006.06.052. PubMed DOI

Yilmaz MB, Yontar C, Erdem A et al. Comparative effects of levosimendan and dobutamine on right ventricular function in patients with biventricular heart failure. Heart Vessels. 2009;24:16–21. doi: 10.1007/s00380-008-1077-2. PubMed DOI

Russ MA, Prondzinsky R, Carter JM et al. Right ventricular function in myocardial infarction complicated by cardiogenic shock: improvement with levosimendan. Crit Care Med. 2009;37:3017–23. doi: 10.1097/CCM.0b013e3181b0314a. PubMed DOI

Lilleberg J, Laine M, Palkama T et al. Duration of the haemodynamic action of a 24-h infusion of levosimendan in patients with congestive heart failure. Eur J Heart Fail. 2007;9:75–82. doi: 10.1016/j.ejheart.2006.04.012. PubMed DOI

Kivikko M, Lehtonen L, Colucci WS. Sustained hemodynamic effects of intravenous levosimendan. Circulation. 2003;107:81–6. doi: 10.1161/01.cir.0000043245.00859.11. PubMed DOI

Antila S, Kivikko M, Lehtonen L et al. Pharmacokinetics of levosimendan and its circulating metabolites in patients with heart failure after an extended continuous infusion of levosimendan. Br J Clin Pharmacol. 2004;57:412–5. doi: 10.1111/j.1365-2125.2003.02043.x. PubMed DOI PMC

Mebazaa A, Nieminen MS, Packer M et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA. 2007;297:1883–91. doi: 10.1001/jama.297.17.1883. PubMed DOI

Packer M, Colucci W, Fisher L et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail. 2013;1:103–11. doi: 10.1016/j.jchf.2012.12.004. PubMed DOI

Follath F, Cleland JG, Just H et al. Efficacy and safety of intravenous levosimendan, a novel calcium sensitiser, in severe low output heart failure: results of a randomised, double-blind comparison with dobutamine (LIDO Study) Lancet. 2002;360:196–202. doi: 10.1016/s0140-6736(02)09455-2. PubMed DOI

Slawsky MT, Colucci WS, Gottlieb SS et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Circulation. 2000;102:2222–7. doi: 10.1161/01.cir.102.18.2222. PubMed DOI

Moiseyev VS, Põder P, Andrejevs N et al. Safety and efficacy of a novel calcium sensitiser, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction: a randomized, placebo-controlled, double-blind study (RUSSLAN) Eur Heart J. 2002;23:1422–32. doi: 10.1053/euhj.2001.3158. PubMed DOI

Mebazaa A, Nieminen MS, Filippatos GS et al. Levosimendan vs. dobutamine: outcomes for acute heart failure patients on beta-blockers in SURVIVE. Eur J Heart Fail. 2009;11:304–11. doi: 10.1093/eurjhf/hfn045. PubMed DOI PMC

Landoni G, Biondi-Zoccai G, Greco M et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012;40:634–46. doi: 10.1097/CCM.0b013e318232962a. PubMed DOI

Sikora J, Pstragowski K, Skibinska N et al. Impact of levosimendan on platelet function. Thromb Res. 2017;159:76–81. doi: 10.1016/j.thromres.2017.10.001. PubMed DOI

Yan SB, Wang XY, Shang GK et al. Impact of perioperative levosimendan administration on risk of bleeding after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Cardiovasc Drugs. 2020;20:149–60. doi: 10.1007/s40256-019-00372-2. PubMed DOI

Mehta RH, Leimberger JD, van Diepen S et al. LEVO-CTS Investigators. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376:2032–42. doi: 10.1056/NEJMoa1616218. PubMed DOI

Gong B, Li Z, Yat Wong PC. Levosimendan treatment for heart failure: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2015;29:1415–25. doi: 10.1053/j.jvca.2015.03.023. PubMed DOI

SIMDAX. Summary of Product Characteristics. https://www.simdax.com/siteassets/simdax-spc.pdf (accessed 23 April 2020)

Nieminen MS, Buerke M, Cohen-Solál A et al. The role of levosimendan in acute heart failure complicating acute coronary syndrome: a review and expert consensus opinion. Int J Cardiol. 2016;218:150–7. doi: 10.1016/j.ijcard.2016.05.009. PubMed DOI

Harjola VP, Giannakoulas G, von Lewinski D et al. Use of levosimendan in acute heart failure. Eur Heart J Suppl. 2018;20(Suppl I):I2–10. doi: 10.1093/eurheartj/suy039. PubMed DOI PMC

Pollesello P, Ben Gal T, Bettex D et al. Short-term therapies for treatment of acute and advanced heart failure: why so few drugs available in clinical use, why even fewer in the pipeline? J Clin Med. 2019;8:e1834. doi: 10.3390/jcm8111834. PubMed DOI PMC

Gheorghiade M, Adams KF, Cleland JG et al. Phase III clinical trial end points in acute heart failure syndromes: a virtual roundtable with the Acute Heart Failure Syndromes International Working Group. Am Heart J. 2009;157:957–70. doi: 10.1016/j.ahj.2009.04.010. PubMed DOI

Zannad F, Garcia AA, Anker SD et al. Clinical outcome endpoints in heart failure trials: a European Society of Cardiology Heart Failure Association consensus document. Eur J Heart Fail. 2013;15:1082–94. doi: 10.1093/eurjhf/hft095. PubMed DOI

Tacon CL, McCaffrey J, Delaney A. Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med. 2012;38:359–67. doi: 10.1007/s00134-011-2435-6. PubMed DOI

Nony P, Boissel JP, Lievre M et al. Evaluation of the effect of phosphodiesterase inhibitors on mortality in chronic heart failure patients. A meta-analysis. Eur J Clin Pharmacol. 1994;46:191–6. doi: 10.1007/bf00192547. PubMed DOI

Pollesello P, Parissis J, Kivikko M et al. Levosimendan meta-analyses: is there a pattern in the effect on mortality? Int J Cardiol. 2016;209:77–83. doi: 10.1016/j.ijcard.2016.02.014. PubMed DOI

Mebazaa A, Parissis J, Porcher R et al. Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 2011;37:290–301. doi: 10.1007/s00134-010-2073-4. PubMed DOI

Nieminen MS, Böhm M, Cowie MR et al. Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26:384–416. doi: 10.1093/eurheartj/ehi044. PubMed DOI

Dickstein K, Cohen-Solal A, Filippatos G et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Eur Heart J. 2008;29:2388–442. doi: 10.1093/eurheartj/ehn309. PubMed DOI

McMurray JJ, Adamopoulos S, Anker SD et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Eur Heart J. 2012;33:1787–847. doi: 10.1093/eurheartj/ehs104. PubMed DOI

Ponikowski P, Voors AA, Anker SD et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200. doi: 10.1002/ejhf.592. PubMed DOI

Farmakis D, Agostoni P, Baholli L et al. A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: an expert panel consensus. Int J Cardiol. 2019;297:83–90. doi: 10.1016/j.ijcard.2019.09.005. PubMed DOI

Agostoni P, Farmakis DT, Garcia-Pinilla JM et al. Hemodynamic balance in acute and advanced heart failure: an expert perspective on the role of levosimendan. Card Fail Rev. 2019;5:155–61. doi: 10.15420/cfr.2019.01.R1. PubMed DOI PMC

Bouchez S, Fedele F, Giannakoulas G et al. Levosimendan in acute and advanced heart failure: an expert perspective on posology and therapeutic application. Cardiovasc Drugs Ther. 2018;32:617–24. doi: 10.1007/s10557-018-6838-2. PubMed DOI PMC

Oliva F, Comin-Colet J, Fedele F et al. Repetitive levosimendan treatment in the management of advanced heart failure. Eur Heart J Suppl. 2018;20(Suppl I):I11–20. doi: 10.1093/eurheartj/suy040. PubMed DOI PMC

Delgado JF, Oliva F, Reinecke A. The inodilator levosimendan in repetitive doses in the treatment of advanced heart failure. Eur Heart J Suppl. 2017;19(Suppl C):C8–14. doi: 10.1093/eurheartj/sux004. PubMed DOI PMC

Pölzl G, Altenberger J, Baholli L et al. Repetitive use of levosimendan in advanced heart failure: need for stronger evidence in a field in dire need of a useful therapy. Int J Cardiol. 2017;243:389–39. doi: 10.1016/j.ijcard.2017.05.081. PubMed DOI

Nieminen MS, Altenberger J, Ben-Gal T et al. Repetitive use of levosimendan for treatment of chronic advanced heart failure: clinical evidence, practical considerations, and perspectives: an expert panel consensus. Int J Cardiol. 2014;174:360–7. doi: 10.1016/j.ijcard.2014.04.111. PubMed DOI

Toller W, Algotsson L, Guarracino F et al. Perioperative use of levosimendan: best practice in operative settings. J Cardiothorac Vasc Anesth. 2013;27:361–6. doi: 10.1053/j.jvca.2012.04.007. PubMed DOI

Toller W, Heringlake M, Guarracino F et al. Preoperative and perioperative use of levosimendan in cardiac surgery: European expert opinion. Int J Cardiol. 2015;184:323–36. doi: 10.1016/j.ijcard.2015.02.022. PubMed DOI

Shi WY, Li S, Collins N, Cottee DB et al. Peri-operative levosimendan in patients undergoing cardiac surgery: an overview of the evidence. Heart Lung Circ. 2015;24:667–72. doi: 10.1016/j.hlc.2015.03.007. PubMed DOI

Herpain A, Bouchez S, Girardis M et al. Use of levosimendan in intensive care unit settings: an opinion paper. J Cardiovasc Pharmacol. 2019;73:3–14. doi: 10.1097/FJC.0000000000000636. PubMed DOI PMC

Yilmaz MB, Grossini E, Silva Cardoso JC et al. Renal effects of levosimendan: a consensus report. Cardiovasc Drugs Ther. 2013;27:581–90. doi: 10.1007/s10557-013-6485-6. PubMed DOI PMC

Nieminen MS, Dickstein K, Fonseca C et al. The patient perspective: quality of life in advanced heart failure with frequent hospitalisations. Int J Cardiol. 2015;191:256–64. doi: 10.1016/j.ijcard.2015.04.235. PubMed DOI

Nieminen MS, Fonseca C, Brito D et al. The potential of the inodilator levosimendan in maintaining quality of life in advanced heart failure. Eur Heart J Suppl. 2017;19(Suppl C):C15–21. doi: 10.1093/eurheartj/sux003. PubMed DOI PMC

Mushtaq S, Andreini D, Farina S et al. Levosimendan improves exercise performance in patients with advanced chronic heart failure. ESC Heart Fail. 2015;2:133–41. doi: 10.1002/ehf2.12047. PubMed DOI PMC

Campodonico J, Mapelli M, Spadafora E et al. Surfactant proteins changes after acute hemodynamic improvement in patients with advanced chronic heart failure treated with Levosimendan. Respir Physiol Neurobiol. 2018;252–253:47–51. doi: 10.1016/j.resp.2018.03.007. PubMed DOI

Nieminen MS, Buerke M, Parissis J et al. Pharmaco-economics of levosimendan in cardiology: a European perspective. Int J Cardiol. 2015;199:337–41. doi: 10.1016/j.ijcard.2015.07.049. PubMed DOI

Papp Z, Édes I, Fruhwald S et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol. 2012;159:82–7. doi: 10.1016/j.ijcard.2011.07.022. PubMed DOI

Pollesello P, Papp Z, Papp JG. Calcium sensitizers: what have we learned over the last 25 years? Int J Cardiol. 2016;203:543–8. doi: 10.1016/j.ijcard.2015.10.240. PubMed DOI

Bistola V, Arfaras-Melainis A, Polyzogopoulou E et al. Inotropes in acute heart failure: from guidelines to practical use: therapeutic options and clinical practice. Card Fail Rev. 2019;5:133–9. doi: 10.15420/cfr.2019.11.2. PubMed DOI PMC

Fuhrmann JT, Schmeisser A, Schulze MR et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2008;36:2257–66. doi: 10.1097/CCM.0b013e3181809846. PubMed DOI

García-Gonzáles MJ, Domínguez-Rodríguez A, Ferrer-Hita JJ et al. Cardiogenic shock after primary percutaneous coronary intervention: effects of levosimendan compared with dobutamine on haemodynamics. Eur J Heart Fail. 2006;8:723–8. doi: 10.1016/j.ejheart.2006.01.007. PubMed DOI

Dominguez-Rodriguez A, Samimi-Fard S, Garcia-Gonzalez MJ et al. Effects of levosimendan versus dobutamine on left ventricular diastolic function in patients with cardiogenic shock after primary angioplasty. Int J Cardiol. 2008;128:214–17. doi: 10.1016/j.ijcard.2007.05.018. PubMed DOI

Samimi-Fard S, García-González MJ, Domínguez-Rodríguez A et al. Effects of levosimendan versus dobutamine on long-term survival of patients with cardiogenic shock after primary coronary angioplasty. Int J Cardiol. 2008;127:284–7. doi: 10.1016/j.ijcard.2007.04.143. PubMed DOI

Christoph A, Prondzinsky R, Russ M et al. Early and sustained haemodynamic improvement with levosimendan compared to intraaortic balloon counterpulsation (IABP) in cardiogenic shock complicating acute myocardial infarction. Acute Card Care. 2008;10:49–57. doi: 10.1080/17482940701358564. PubMed DOI

Omerovic E, Råmunddal T, Albertsson P et al. Levosimendan neither improves nor worsens mortality in patients with cardiogenic shock due to ST-elevation myocardial infarction. Vasc Health Risk Manag. 2010;6:657–63. doi: 10.2147/vhrm.s8856. PubMed DOI PMC

Guarracino F, Cariello C, Danella A et al. Effect of levosimendan on ventriculo-arterial coupling in patients with ischemic cardiomyopathy. Acta Anaesthesiol Scand. 2007;51:1217–24. doi: 10.1111/j.1399-6576.2007.01428.x. PubMed DOI

Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care. 2013;17:213. doi: 10.1186/cc12522. PubMed DOI PMC

Hering D, Jaguszewski M. Levosimendan: new hope therapy for takotsubo syndrome. Cardiol J. 2016;23:616–17. doi: 10.5603/CJ.2016.0101. PubMed DOI

De Santis V, Vitale D, Tritapepe L et al. Use of levosimendan for cardiogenic shock in a patient with the apical ballooning syndrome. Ann Intern Med. 2008;149:365–7. doi: 10.7326/0003-4819-149-5-200809020-00028. PubMed DOI

Paur H, Wright PT, Sikkel MB et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126:697–706. doi: 10.1161/CIRCULATIONAHA.112.111591. PubMed DOI PMC

Lyon AR, Bossone E, Schneider B et al. Current state of knowledge on Takotsubo syndrome: a position statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2016;18:8–27. doi: 10.1002/ejhf.424. PubMed DOI

Harrison RW, Hasselblad V, Mehta RH et al. Effect of levosimendan on survival and adverse events after cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2013;27:1224–32. doi: 10.1053/j.jvca.2013.03.027. PubMed DOI

Cholley B, Caruba T, Grosjean S et al. Effect of levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: the LICORN Randomized Clinical Trial. JAMA. 2017;318:548–56. doi: 10.1001/jama.2017.9973. PubMed DOI PMC

Landoni G, Lomivorotov VV, Alvaro G et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376:2021–31. doi: 10.1056/NEJMoa1616325. PubMed DOI

Lee CT, Lin YC, Yeh YC et al. Effects of levosimendan for perioperative cardiovascular dysfunction in patients receiving cardiac surgery: a meta-analysis with trial sequential analysis. Intensive Care Med. 2017;43:1929–30. doi: 10.1007/s00134-017-4927-5. PubMed DOI

Guarracino F, Heringlake M, Cholley B et al. Use of levosimendan in cardiac surgery: an update after the LEVO-CTS, CHEETAH, and LICORN trials in the light of clinical practice. J Cardiovasc Pharmacol. 2018;71:1–9. doi: 10.1097/FJC.0000000000000551. PubMed DOI PMC

Wang W, Zhou X, Liao X et al. The efficacy and safety of prophylactic use of levosimendan on patients undergoing coronary artery bypass graft: a systematic review and meta-analysis. J Anesth. 2019;33:543–50. doi: 10.1007/s00540-019-02643-3. PubMed DOI

van Diepen S, Mehta RH, Leimberger JD Levosimendan in patients with reduced left ventricular function undergoing isolated coronary or valve surgery. J Thorac Cardiovasc Surg. 2019. epub ahead of press. PubMed DOI

Weber C, Esser M, Eghbalzadeh K Levosimendan reduces mortality and low cardiac output syndrome in cardiac surgery. Thorac Cardiovasc Surg. 2019. epub ahead of press. PubMed DOI

Qiu J, Jia L, Hao Y et al. Efficacy and safety of levosimendan in patients with acute right heart failure: a meta-analysis. Life Sci. 2017;184:30–6. doi: 10.1016/j.lfs.2017.07.001. PubMed DOI

Fedele F, Severino P, Calcagno S et al. Heart failure: TNM-like classification. J Am Coll Cardiol. 2014;63:1959–60. doi: 10.1016/j.jacc.2014.02.552. PubMed DOI

Zager RA, Johnson AC, Lund S et al. Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol. 2006;290:F1453–62. doi: 10.1152/ajprenal.00485.2005. PubMed DOI

Rehberg S, Ertmer C, Vincent JL et al. Effects of combined arginine vasopressin and levosimendan on organ function in ovine septic shock. Crit Care Med. 2010;38:2016–23. doi: 10.1097/CCM.0b013e3181ef4694. PubMed DOI

Grossini E, Molinari C, Pollesello P et al. Levosimendan protection against kidney ischemia/reperfusion injuries in anesthetized pigs. J Pharmacol Exp Ther. 2012;342:376–88. doi: 10.1124/jpet.112.193961. PubMed DOI

Fedele F, Bruno N, Brasolin B et al. Levosimendan improves renal function in acute decompensated heart failure: possible underlying mechanisms. Eur J Heart Fail. 2014;16:281–8. doi: 10.1002/ejhf.9. PubMed DOI

Lannemyr L, Ricksten S-E, Rundqvist B et al. Differential effects of levosimendan and dobutamine on glomerular filtration rate in patients with heart failure and renal impairment: a randomized double-blind controlled trial. J Am Heart Assoc. 2018;7:e008455. doi: 10.1161/JAHA.117.008455. PubMed DOI PMC

Bragadottir G, Redfors B, Ricksten SE. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: a randomized placebo-controlled study. Crit Care Med. 2013;41:2328–35. doi: 10.1097/CCM.0b013e31828e946a. PubMed DOI

Lannemyr L, Bragadottir G, Redfors B et al. Effects of milrinone on renal perfusion, filtration and oxygenation in patients with acute heart failure and low cardiac output early after cardiac surgery. J Crit Care. 2020;57:225–30. doi: 10.1016/j.jcrc.2019.12.022. PubMed DOI

Sanfilippo F, Knight JB, Scolletta S et al. Levosimendan for patients with severely reduced left ventricular systolic function and/or low cardiac output syndrome undergoing cardiac surgery: a systematic review and meta-analysis. Crit Care. 2017;21:252. doi: 10.1186/s13054-017-1849-0. PubMed DOI PMC

Putzu A, Clivio S, Belletti A et al. Perioperative levosimendan in cardiac surgery: a systematic review with meta-analysis and trial sequential analysis. Int J Cardiol. 2018;251:22–31. doi: 10.1016/j.ijcard.2017.10.077. PubMed DOI

Niu ZZ, Wu SM, Sun WY et al. Perioperative levosimendan therapy is associated with a lower incidence of acute kidney injury after cardiac surgery: a meta-analysis. J Cardiovasc Pharmacol. 2014;63:107–12. doi: 10.1097/FJC.0000000000000028. PubMed DOI

Bove T, Matteazzi A, Belletti A et al. Beneficial impact of levosimendan in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Heart Lung Vessel. 2015;7:35–46. PubMed PMC

Solomon SD, Dobson J, Pocock S et al. Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation. 2007;116:1482–7. doi: 10.1161/CIRCULATIONAHA.107.696906. PubMed DOI

Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154:260–6. doi: 10.1016/j.ahj.2007.01.041. PubMed DOI

Altenberger J, Parissis JT, Costard-Jaeckle A et al. Efficacy and safety of the pulsed infusions of levosimendan in outpatients with advanced heart failure (LevoRep) study: a multicentre randomized trial. Eur J Heart Fail. 2014;16:898–906. doi: 10.1002/ejhf.118. PubMed DOI

Comín-Colet J, Manito N, Segovia-Cubero J et al. Efficacy and safety of intermittent intravenous outpatient administration of levosimendan in patients with advanced heart failure: the LION-HEART multicentre randomised trial. Eur J Heart Fail. 2018;20:1128–36. doi: 10.1002/ejhf.1145. PubMed DOI

LAICA Study Investigators. Efficacy and security of intermittent repeated levosimendan administration in patients with advanced heart failure: a randomized, double-blind, placebo controlled multicenter trial: LAICA study. Presented at the European Society of Cardiology–Heart Failure Association Congress, Florence, Italy, 21 May 2016

Silvetti S, Nieminen MS. Repeated or intermittent levosimendan treatment in advanced heart failure: an updated meta-analysis. Int J Cardiol. 2016;202:138–43. doi: 10.1016/j.ijcard.2015.08.188. PubMed DOI

Silvetti S, Greco T, Di Prima AL et al. Intermittent levosimendan improves mid-term survival in chronic heart failure patients: meta-analysis of randomised trials. Clin Res Cardiol. 2014;103:505–13. doi: 10.1007/s00392-013-0649-z. PubMed DOI

Pölzl G, Allipour Birgani S, Comín-Colet J et al. Repetitive levosimendan infusions for patients with advanced chronic heart failure in the vulnerable post-discharge period. ESC Heart Fail. 2019;6:174–81. doi: 10.1002/ehf2.12366. PubMed DOI PMC

Kocabeyoglu SS, Kervan U, Sert DE et al. Optimization with levosimendan improves outcomes after left ventricular assist device implantation. Eur J Cardiothorac Surg. 2020;57:176–82. doi: 10.1093/ejcts/ezz159. PubMed DOI

Sim I. Mobile devices and health. N Engl J Med. 2019;381:956–68. doi: 10.1056/NEJMra1806949. PubMed DOI

Andrès E, Talha S, Zulfiqar A.-A. et al. Current research and new perspectives of telemedicine in chronic heart failure: narrative review and points of interest for the clinician. J Clin Med. 2018;7:544. doi: 10.3390/jcm7120544. PubMed DOI PMC

Wells R, Stockdill ML, Dionne-Odom JN et al. Educate, Nurture, Advise, Before Life Ends Comprehensive Heartcare for Patients and Caregivers (ENABLE CHF-PC): study protocol for a randomized controlled trial. Trials. 2018;19:422. doi: 10.1186/s13063-018-2770-9. PubMed DOI PMC

Schumann J, Henrich EC, Strobl H Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2018. p. CD009669. PubMed DOI PMC

Morelli A, De Castro S, Teboul JL et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 2005;31:638–44. doi: 10.1007/s00134-005-2619-z. PubMed DOI

Zangrillo A, Putzu A, Monaco F et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: a meta-analysis of randomized trials. J Crit Care. 2015;30:908–13. doi: 10.1016/j.jcrc.2015.05.017. PubMed DOI

Ouanes-Besbes L, Ouanes I, Dachraoui F et al. Weaning difficult-to-wean chronic obstructive pulmonary disease patients: a pilot study comparing initial hemodynamic effects of levosimendan and dobutamine. J Crit Care. 2011;26:15–21. doi: 10.1016/j.jcrc.2010.01.002. PubMed DOI

Aso S, Matsui H, Fushimi K et al. In-hospital mortality and successful weaning from venoarterial extracorporeal membrane oxygenation: analysis of 5,263 patients using a national inpatient database in Japan. Crit Care. 2016;20:80. doi: 10.1186/s13054-016-1261-1. PubMed DOI PMC

Affronti A, di Bella I, Carino D et al. Levosimendan may improve weaning outcomes in venoarterial ECMO patients. ASAIO J. 2013;59:554–7. doi: 10.1097/MAT.0b013e3182a4b32e. PubMed DOI

Distelmaier K, Roth C, Schrutka L et al. Beneficial effects of levosimendan on survival in patients undergoing extracorporeal membrane oxygenation after cardiovascular surgery. Br J Anaesth. 2016;117:52–8. doi: 10.1093/bja/aew151. PubMed DOI PMC

Sangalli F, Avalli L, Laratta M et al. Effects of levosimendan on endothelial function and hemodynamics during weaning from veno-arterial extracorporeal life support. J Cardiothorac Vasc Anesth. 2016;30:1449–53. doi: 10.1053/j.jvca.2016.03.139. PubMed DOI

Jacky A, Rudiger A, Krüger B et al. Comparison of levosimendan and milrinone for ECLS weaning in patients after cardiac surgery – a retrospective before and after study. J Cardiothorac Vasc Anesth. 2018;32:2112–19. doi: 10.1053/j.jvca.2018.04.019. PubMed DOI

Yilmaz MB, Yalta K, Yontar C et al. Levosimendan improves renal function in patients with acute decompensated heart failure: comparison with dobutamine. Cardiovasc Drugs Ther. 2007;21:431–5. doi: 10.1007/s10557-007-6066-7. PubMed DOI

Hou ZQ, Sun ZX, Su CY et al. Effect of levosimendan on estimated glomerular filtration rate in hospitalized patients with decompensated heart failure and renal dysfunction. Cardiovasc Ther. 2013;31:108–14. doi: 10.1111/1755-5922.12001. PubMed DOI

Zemljic G, Bunc M, Yazdanbakhsh AP et al. Levosimendan improves renal function in patients with advanced chronic heart failure awaiting cardiac transplantation. J Card Fail. 2007;13:417–21. doi: 10.1016/j.cardfail.2007.03.005. PubMed DOI

Silva-Cardoso J, Ferreira J, Oliveira-Soares A et al. Effectiveness and safety of levosimendan in clinical practice. Rev Port Cardiol. 2009;28:143–53. PubMed

Zangrillo A, Alvaro G, Belletti A et al. Effect of levosimendan on renal outcome in cardiac surgery patients with chronic kidney disease and perioperative cardiovascular dysfunction: a substudy of a multicenter randomized trial. J Cardiothorac Vasc Anesth. 2018;32:2152–9. doi: 10.1053/j.jvca.2018.02.039. PubMed DOI

Damman K, Voors AA. Levosimendan improves renal function in acute decompensated heart failure: cause and clinical application. Cardiovasc Drugs Ther. 2007;21:403–4. doi: 10.1007/s10557-007-6070-y. PubMed DOI

Singh P, Ricksten SE, Bragadottir G et al. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol. 2013;40:138–47. doi: 10.1111/1440-1681.12036. PubMed DOI PMC

Santoro F, Ieva R, Ferraretti A et al. Safety and feasibility of levosimendan administration in takotsubo cardiomyopathy: a case series. Cardiovasc Ther. 2013;31:e133–7. doi: 10.1111/1755-5922.12047. PubMed DOI

Schulz R, Rose J, Martin C et al. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation. 1993;88:684–95. doi: 10.1161/01.cir.88.2.684. PubMed DOI

Beohar N, Erdogan AK, Lee DC et al. Acute heart failure syndromes and coronary perfusion. J Am Coll Cardiol. 2008;52:13–16. doi: 10.1016/j.jacc.2008.03.037. PubMed DOI

Duncker DJ, Koller A, Merkus D et al. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57:409–22. doi: 10.1016/j.pcad.2014.12.002. PubMed DOI PMC

Pelliccia F, Kaski JC, Crea F et al. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135:2426–41. doi: 10.1161/CIRCULATIONAHA.116.027121. PubMed DOI

Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608. doi: 10.1097/01.CCM.0000266683.64081.02. PubMed DOI

Suzuki T, Suzuki Y, Okuda J et al. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis. J Intensive Care. 2007;5:22. doi: 10.1186/s40560-017-0215-2. PubMed DOI PMC

Belletti A, Benedetto U, Biondi-Zoccai G et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017;37:91–8. doi: 10.1016/j.jcrc.2016.08.010. PubMed DOI

Wang Q, Yokoo H, Takashina M et al. Anti-inflammatory profile of levosimendan in cecal ligation-induced septic mice and in lipopolysaccharide-stimulated macrophages. Crit Care Med. 2015;43:e508–20. doi: 10.1097/CCM.0000000000001269. PubMed DOI

Tsao CM, Li KY, Chen SJ et al. Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: studies in a rat model. Crit Care. 2014;18:1683–12. doi: 10.1186/s13054-014-0652-4. PubMed DOI PMC

Morelli A, Donati A, Ertmer C et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care. 2010;14:R232. doi: 10.1186/cc9387. PubMed DOI PMC

Torraco A, Carrozzo R, Piemonte F et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie. 2014;102:166–73. doi: 10.1016/j.biochi.2014.03.006. PubMed DOI

Hajjej Z, Meddeb B, Sellami W et al. Effects of levosimendan on cellular metabolic alterations in patients with septic shock: a randomized controlled pilot study. Shock. 2017;48:307–12. doi: 10.1097/SHK.0000000000000851. PubMed DOI PMC

Singer M. Catecholamine treatment for shock: equally good or bad? Lancet. 2007;370:636–7. doi: 10.1016/S0140-6736(07)61317-8. PubMed DOI

Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42:1387–97. doi: 10.1007/s00134-016-4249-z. PubMed DOI

Coquerel D, Sainsily X, Dumont L et al. The apelinergic system as an alternative to catecholamines in low-output septic shock. Crit Care. 2018;22:10. doi: 10.1186/s13054-018-1942-z. PubMed DOI PMC

He X, Su F, Taccone FS et al. A selective V(1A) receptor agonist, selepressin, is superior to arginine vasopressin and to norepinephrine in ovine septic shock. Crit Care Med. 2016;44:23–31. doi: 10.1097/CCM.0000000000001380. PubMed DOI PMC

Khanna A, English SW, Wang XS et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377:419–30. doi: 10.1056/NEJMoa1704154. PubMed DOI

Creteur J, Bouckaert Y, Mélot C et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 2006;32:790. doi: 10.1007/s00134-006-0130-9. author reply. PubMed DOI

Gordon AC, Perkins GD, Singer M et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375:1638–48. doi: 10.1056/NEJMoa1609409. PubMed DOI

Angus DC, Mira JP, Vincent JL. Improving clinical trials in the critically ill. Crit Care Med. 2010;38:527–32. doi: 10.1097/CCM.0b013e3181c0259d. PubMed DOI

Hodgson C, Cuthbertson BH. Improving outcomes after critical illness: harder than we thought! Intensive Care Med. 2016;42:1772–4. doi: 10.1007/s00134-016-4526-x. PubMed DOI

Marshall JC. Global collaboration in acute care clinical research: opportunities, challenges, and needs. Crit Care Med. 2017;45:311–20. doi: 10.1097/CCM.0000000000002211. PubMed DOI

Iwashyna TJ, Deane AM. Individualizing endpoints in randomized clinical trials to better inform individual patient care: the TARGET proposal. Crit Care. 2016;20:218. doi: 10.1186/s13054-016-1388-0. PubMed DOI PMC

Mebazaa A, Laterre PF, Russell JA et al. Designing phase 3 sepsis trials: application of learned experiences from critical care trials in acute heart failure. J Intensive Care. 2016;4:24. doi: 10.1186/s40560-016-0151-6. PubMed DOI PMC

Girbes ARJ, de Grooth H-J. Time to stop randomized and large pragmatic trials for intensive care medicine syndromes: the case of sepsis and acute respiratory distress syndrome. J Thorac Dis. 2020;12(Suppl 1):S101–9. doi: 10.21037/jtd.2019.10.36. PubMed DOI PMC

Zhang YH, Zhang J, Qing EM et al. Comparison on efficacy and safety between domestic levosimendan versus dobutamine for patients with acute decompensated heart failure. Zhonghua Xin Xue Guan Bing Za Zhi. 2012;40:153–6. [in Chinese] PubMed

Zhang YH, Qing EM, Zhang J et al. Hemodynamic and efficacies of domestic levosimendan versus dobutamine in patients with acute decompensated heart failure. Zhonghua Yi Xue Za Zhi. 2012;92:555–8. [in Chinese] PubMed

Wang L, Cui L, Wei JP et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in decompensated heart failure. Zhonghua Xin Xue Guan Bing Za Zhi. 2010;38:527–30. [in Chinese] PubMed

Suominen PK. Single-center experience with levosimendan in children undergoing cardiac surgery and in children with decompensated heart failure. BMC Anesthesiol. 2011;11:18. doi: 10.1186/1471-2253-11-18. PubMed DOI PMC

Lechner E, Moosbauer W, Pinter M et al. Use of levosimendan, a new inodilator, for postoperative myocardial stunning in a premature neonate. Pediatr Crit Care Med. 2007;8:61–3. doi: 10.1097/01.PCC.0000253026.67341.5D. PubMed DOI

Momeni M, Rubay J, Matta A et al. Levosimendan in congenital cardiac surgery: a randomized, double-blind clinical trial. J Cardiothorac Vasc Anesth. 2011;25:419–24. doi: 10.1053/j.jvca.2010.07.004. PubMed DOI

Pellicer A, Riera J, Lopez-Ortego P et al. Phase 1 study of two inodilators in neonates undergoing cardiovascular surgery. Pediatr Res. 2013;73:95–103. doi: 10.1038/pr.2012.154. PubMed DOI

Ebade AA, Khalil MA, Mohamed AK. Levosimendan is superior to dobutamine as an inodilator in the treatment of pulmonary hypertension for children undergoing cardiac surgery. J Anesth. 2013;27:334–9. doi: 10.1007/s00540-012-1537-9. PubMed DOI

Ottenheijm CA, Heunks LM, Hafmans T et al. Titin and diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:527–34. doi: 10.1164/rccm.200507-1056OC. PubMed DOI PMC

Dres M, Dubé BP, Mayaux J et al. Coexistence and Impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195:57–66. doi: 10.1164/rccm.201602-0367OC. PubMed DOI

Van Hees HW, Dekhuijzen PN, Heunks LM. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179:41–7. doi: 10.1164/rccm.200805-732OC. PubMed DOI

Hooijman PE, Beishuizen A, de Waard MC et al. Diaphragm fiber strength is reduced in critically ill patients and restored by a troponin activator. Am J Respir Crit Care Med. 2014;189:863–5. doi: 10.1164/rccm.201312-2260LE. PubMed DOI PMC

Doorduin J, Sinderby CA, Beck J et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med. 2012;185:90–5. doi: 10.1164/rccm.201107-1268OC. PubMed DOI

Roesthuis L, van der Hoeven H, Sinderby C et al. Effects of levosimendan on respiratory muscle function in patients weaning from mechanical ventilation. Intensive Care Med. 2019;45:1372–81. doi: 10.1007/s00134-019-05767-y. PubMed DOI PMC

Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377:162–72. doi: 10.1056/NEJMra1603471. PubMed DOI

Kurian KM, Forbes RB, Colville S et al. Cause of death and clinical grading criteria in a cohort of amyotrophic lateral sclerosis cases undergoing autopsy from the Scottish Motor Neurone Disease Register. J Neurol Neurosurg Psychiatry. 2009;80:84–7. doi: 10.1136/jnnp.2008.149708. PubMed DOI

Paulukonis ST, Roberts EM, Valle JP et al. Survival and cause of death among a cohort of confirmed amyotrophic lateral sclerosis cases. PLoS One. 2015;10:e0131965. doi: 10.1371/journal.pone.0131965. PubMed DOI PMC

Gowland A, Opie-Martin S, Scott KM et al. Predicting the future of ALS: the impact of demographic change and potential new treatments on the prevalence of ALS in the United Kingdom, 2020-2116. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:264–74. doi: 10.1080/21678421.2019.1587629. PubMed DOI PMC

Andrews JA, Cudkowicz ME, Hardiman O et al. VITALITY-ALS, a phase III trial of tirasemtiv, a selective fast skeletal muscle troponin activator, as a potential treatment for patients with amyotrophic lateral sclerosis: study design and baseline characteristics. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19:259–66. doi: 10.1080/21678421.2018.1426770. PubMed DOI

de Jongh AD, van Eijk RPA, van den Berg LH. Evidence for a multimodal effect of riluzole in patients with ALS? J Neurol Neurosurg Psychiatry. 2019;90:1183–4. doi: 10.1136/jnnp-2018-320211. PubMed DOI

Khairoalsindi OA, Abuzinadah AR. Maximizing the survival of amyotrophic lateral sclerosis patients: current perspectives. Neurol Res Int. 2018;2018:6534150. doi: 10.1155/2018/6534150. PubMed DOI PMC

Writing Group of the Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16:505–12. doi: 10.1016/S1474-4422(17)30115-1. PubMed DOI

Christensen TH, Kedes L. The myogenic regulatory circuit that controls cardiac/slow twitch troponin C gene transcription in skeletal muscle involves E-box, MEF-2, and MEF-3 motifs. Gene Expr. 1999;8:247–61. PubMed PMC

Al-Chalabi A, Heunks LMA, Papp Z et al. Potential of the cardiovascular drug levosimendan in the management of amyotrophic lateral sclerosis: an overview of a working hypothesis. J Cardiovasc Pharmacol. 2019;74:389–99. doi: 10.1097/FJC.0000000000000728. PubMed DOI

Al-Chalabi A, Shaw P, Leigh PN et al. Oral levosimendan in amyotrophic lateral sclerosis: a phase II multicentre, randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2019;90:1165–70. doi: 10.1136/jnnp-2018-320288. PubMed DOI PMC

Rababa’h AM, Alzoubi KH, Baydoun S et al. Levosimendan prevents memory impairment induced by diabetes in rats: role of oxidative stress. Curr Alzheimer Res. 2019;16:1300–8. doi: 10.2174/1567205017666200102153239. PubMed DOI

Rababa’h AM, Alzoubi KH, Atmeh A. Levosimendan enhances memory through antioxidant effect in rat model: behavioral and molecular study. Behav Pharmacol. 2018;29:344–50. doi: 10.1097/FBP.0000000000000362. PubMed DOI

Grossini E, Pollesello P, Bellofatto K et al. Protective effects elicited by levosimendan against liver ischemia/reperfusion injury in anesthetized rats. J Liver Transpl. 2014;20:361–75. doi: 10.1002/lt.23799. PubMed DOI

Lim H, He D, Qiu Y et al. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology. PLoS Comput Biol. 2019;15((6)):e1006619. doi: 10.1371/journal.pcbi.1006619. PubMed DOI PMC

Nieminen MS, Fruhwald S, Heunks LM et al. Levosimendan: current data, clinical use and future development. Heart Lung Vessel. 2013;5:227–45. doi: 10.1136/jnnp-2018-320288. PubMed DOI PMC

Kivikko M, Pollesello P, Tarvasmäki T et al. Effect of baseline characteristics on mortality in the SURVIVE trial on the effect of levosimendan vs dobutamine in acute heart failure: sub-analysis of the Finnish patients. Int J Cardiol. 2016;215:26–31. doi: 10.1016/j.ijcard.2016.04.064. PubMed DOI

Sandner P, Ziegelbauer K. Product-related research: how research can contribute to successful life-cycle management. Drug Discov Today. 2008;13:457–63. doi: 10.1016/j.drudis.2008.03.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...