Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32716064
DOI
10.1111/pce.13860
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, cytokinin signalling, photoperiod, root-to-shoot signalling, trans-zeatin,
- MeSH
- Arabidopsis metabolismus fyziologie MeSH
- chlorofyl metabolismus MeSH
- fotoperioda MeSH
- fyziologický stres fyziologie MeSH
- kořeny rostlin metabolismus fyziologie MeSH
- listy rostlin metabolismus MeSH
- regulátory růstu rostlin metabolismus fyziologie MeSH
- zeatin metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- regulátory růstu rostlin MeSH
- zeatin MeSH
Recently, a novel type of abiotic stress caused by a prolongation of the light period-coined photoperiod stress-has been described in Arabidopsis. During the night after the prolongation of the light period, stress and cell death marker genes are induced. The next day, strongly stressed plants display a reduced photosynthetic efficiency and leaf cells eventually enter programmed cell death. The phytohormone cytokinin (CK) acts as a negative regulator of this photoperiod stress syndrome. In this study, we show that Arabidopsis wild-type plants increase the CK concentration in response to photoperiod stress. Analysis of cytokinin synthesis and transport mutants revealed that root-derived trans-zeatin (tZ)-type CKs protect against photoperiod stress. The CK signalling proteins ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 2 (AHP2), AHP3 and AHP5 and transcription factors ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), ARR10 and ARR12 are required for the protective activity of CK. Analysis of higher order B-type arr mutants suggested that a complex regulatory circuit exists in which the loss of ARR10 or ARR12 can rescue the arr2 phenotype. Together the results revealed the role of root-derived CK acting in the shoot through the two-component signalling system to protect from the negative consequences of strong photoperiod stress.
Zobrazit více v PubMed
Abuelsoud, W., Cortleven, A., & Schmülling, T. (2020). Photoperiod stress induces an oxidative burst-like response and is associated with increased apoplastic peroxidase and decreased catalase activities. Journal of Plant Physiology, in press.
Antoniadi, I., Plačková, L., Simonovik, B., Doležal, K., Turnbull, C., Ljung, K., & Novák, O. (2015). Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell, 27(7), 1955-1967. https://doi.org/10.1105/tpc.15.00176
Argyros, R. D., Mathews, D. E., Chiang, Y.-H., Palmer, C. M., Thibault, D. M., Etheridge, N., … Schaller, G. E. (2008). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell, 20(8), 2102-2116. https://doi.org/10.1105/tpc.108.059584
Arnaud, D., Lee, S., Takebayashi, Y., Choi, D., Choi, J., Sakakibara, H., & Hwang, I. (2017). Cytokinin-mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in Arabidopsis. Plant Cell, 29(3), 543-559. https://doi.org/10.1105/tpc.16.00583
Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(1), 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Bano, A., Hansen, H., Dörffling, K., & Hahn, H. (1994). Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants. Phytochemistry, 37(2), 345-347. https://doi.org/10.1016/0031-9422(94)85058-5
Caers, M., Rudelsheim, P., Van Onckelen, H., & Horemans, S. (1985). Effect of heat stress on photosynthetic activity and chloroplast ultrastructure in correlation with endogenous cytokinin concentration in maize seedlings. Plant and Cell Physiology, 26(1), 47-52. https://doi.org/10.1093/oxfordjournals.pcp.a076894
Choi, J., Huh, S. U., Kojima, M., Sakakibara, H., Paek, K.-H. H., & Hwang, I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell, 19(2), 284-295. https://doi.org/10.1016/j.devcel.2010.07.011
Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., & Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stress in plants. Plant, Cell & Environment, 42(3), 998-1018. https://doi.org/10.1111/pce.13494
Cortleven, A., Marg, I., Yamburenko, M. V., Schlicke, H., Hill, K., Grimm, B., … Schmülling, T. (2016). Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiology, 172(1), 464-478. https://doi.org/10.1104/pp.16.00640
Cortleven, A., Nitschke, S., Klaumünzer, M., Abdelgawad, H., Asard, H., Grimm, B., … Schmülling, T. (2014). A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. Plant Physiology, 164(3), 1470-1483. https://doi.org/10.1104/pp.113.224667
Dortay, H., Mehnert, N., Bürkle, L., Schmülling, T., & Heyl, A. (2006). Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS Journal, 273(20), 4631-4644. https://doi.org/10.1111/j.1742-4658.2006.05467.x
Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H., & Sakakibara, H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 59(1), 75-83. https://doi.org/10.1093/jxb/erm157
Huang, X., Hou, L., Meng, J., You, H., Li, Z., Gong, Z., … Shi, Y. (2018). The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant, 11(7), 970-982. https://doi.org/10.1016/j.molp.2018.05.001
Hutchison, C. E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M. W., … Kieber, J. J. (2006). The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell, 18(11), 3073-3087. https://doi.org/10.1105/tpc.106.045674
Hwang, I., & Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413(6854), 383-389. https://doi.org/10.1038/35096500
Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., … Kakimoto, T. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409(6823), 1060-1063. https://doi.org/10.1038/35059117
Ishida, K., Yamashino, T., Yokoyama, A., & Mizuno, T. (2008). Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 47-57. https://doi.org/10.1093/pcp/pcm165
Itai, C., Ben-Zioni, A., & Ordin, L. (1973). Correlative changes in endogenous hormone levels and shoot growth induced by short heat treatments to the root. Physiologia Plantarum, 29(3), 355-360. https://doi.org/10.1111/j.1399-3054.1973.tb04830.x
Kakimoto, T. (2001). Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant and Cell Physiology, 42(7), 677-685. https://doi.org/10.1093/pcp/pce112
Kiba, T., Takei, K., Kojima, M., & Sakakibara, H. (2013). Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Developmental Cell, 27(4), 452-461. https://doi.org/10.1016/j.devcel.2013.10.004
Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168
Kieber, J. J., & Schaller, G. E. (2018). Cytokinin signaling in plant development. Development, 145(4), dev149344. https://doi.org/10.1242/dev.149344
Ko, D., Kang, J., Kiba, T., Park, J., Kojima, M., Do, J., … Lee, Y. (2014). Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7150-7155. https://doi.org/10.1073/pnas.1321519111
Kudo, T., Kiba, T., & Sakakibara, H. (2010). Metabolism and long-distance translocation of cytokinins. Journal of Integrative Plant Biology, 52(1), 53-60. https://doi.org/10.1111/j.1744-7909.2010.00898.x
Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., … Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445(7128), 652-655. https://doi.org/10.1038/nature05504
Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., … (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell, 21(10), 3152-3169. https://doi.org/10.1105/tpc.109.068676
Lomin, S. N., Krivosheev, D. M., Steklov, M. Y., Arkhipov, D. V., Osolodkin, D. I., Schmülling, T., & Romanov, G. A. (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. Journal of Experimental Botany, 66(7), 1851-1863. https://doi.org/10.1093/jxb/eru522
Mack, T. R., Gao, R., & Stock, A. M. (2009). Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB. Journal of Molecular Biology, 389(2), 349-364. https://doi.org/10.1016/J.JMB.2009.04.014
Marín-de la Rosa, N., Pfeiffer, A., Hill, K., Locascio, A., Bhalerao, R. P., Miskolczi, P., … Alabadí, D. (2015). Genome wide binding site analysis reveals transcriptional coactivation of cytokinin-responsive genes by DELLA proteins. PLoS Genetics, 11(7), e1005337. https://doi.org/10.1371/journal.pgen.1005337
Mason, M. G., Li, J., Mathews, D. E., Kieber, J. J., & Schaller, G. E. (2004). Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiology, 135(2), 927-937. https://doi.org/10.1104/pp.103.038109
Mason, M. G., Mathews, D. E., Argyros, D. A., Maxwell, B. B., Kieber, J. J., Alonso, J. M., … Schaller, G. E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell, 17(11), 3007-3018. https://doi.org/10.1105/tpc.105.035451
Miyawaki, K., Matsumoto-Kitano, M., & Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin, and nitrate. The Plant Journal, 37(1), 128-138. https://doi.org/10.1046/j.1365-313X.2003.01945.x
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner, T., … Tran, L. S. P. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell, 23(6), 2169-2183. https://doi.org/10.1105/tpc.111.087395
Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M., Riefler, M., & Schmülling, T. (2016). Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell, 28(7), 1616-1639. https://doi.org/10.1105/tpc.16.00016
Nitschke, S., Cortleven, A., & Schmülling, T. (2017). Novel stress in plants by altering the photoperiod. Trends in Plant Science, 22(11), 913-916. https://doi.org/10.1016/j.tplants.2017.09.005
Osugi, A., Kojima, M., Takebayashi, Y., Ueda, N., Kiba, T., & Sakakibara, H. (2017). Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants, 3(8), 17112. https://doi.org/10.1038/nplants.2017.112
Pavlů, J., Novák, J., Koukalová, V., Luklová, M., Brzobohatý, B., & Černý, M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. International Journal of Molecular Sciences, 19(8), 2450. https://doi.org/10.3390/ijms19082450
Ramireddy, E., Brenner, W. G., Pfeifer, A., Heyl, A., & Schmülling, T. (2013). In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. Plant and Cell Physiology, 54(7), 1079-1092. https://doi.org/10.1093/pcp/pct060
Riefler, M., Novak, O., Strnad, M., & Schmülling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 18(1), 40-54. https://doi.org/10.1105/tpc.105.037796
Romanov, G. A., Lomin, S. N., & Schmülling, T. (2006). Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. Journal of Experimental Botany, 57(15), 4051-4058. https://doi.org/10.1093/jxb/erl179
Romanov, G. A., Lomin, S. N., & Schmülling, T. (2018). Cytokinin signaling: From the ER or from the PM? That is the question. New Phytologist, 218(1), 41-53. https://doi.org/10.1111/nph.14991
Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57(1), 431-449. https://doi.org/10.1146/annurev.arplant.57.032905.105231
Schulze, A., Zimmer, M., Mielke, S., Stellmach, H., Melnyk, C. W., Hause, B., & Gasperini, D. (2019). Wound-induced shoot-to-root relocation of JA-Ile precursors coordinates Arabidopsis growth. Molecular Plant, 12(10), 1383-1394. https://doi.org/10.1016/j.molp.2019.05.013
Sokolovsky, V., Kaldenhoff, R., Ricci, M., & Russo, V. E. A. (1990). Fast and reliable mini-prep RNA extraction from Neurospora crassa. Fungal Genetics Reports, 37(1), 37. https://doi.org/10.4148/1941-4765.1492
Stolz, A., Riefler, M., Lomin, S. N., Achazi, K., Romanov, G. A., & Schmülling, T. (2011). The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant Journal, 67(1), 157-168. https://doi.org/10.1111/j.1365-313X.2011.04584.x
Sun, Q., Yoda, K., & Suzuki, H. (2005). Internal axial light conduction in the stems and roots of herbaceous plants. Journal of Experimental Botany, 56(409), 191-203. https://doi.org/10.1093/jxb/eri019
Sun, Q., Yoda, K., Suzuki, M., & Suzuki, H. (2003). Vascular tissue in the stem and roots of woody plants can conduct light. Journal of Experimental Botany, 54(387), 1627-1635. https://doi.org/10.1093/jxb/erg167
Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H., & Mizuno, T. (2001). The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant and Cell Physiology, 42(2), 107-113. https://doi.org/10.1093/pcp/pce037
Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M., & Doležal, K. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods, 8(1), 17. https://doi.org/10.1186/1746-4811-8-17
Takei, K., Sakakibara, H., & Sugiyama, T. (2001). Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. Journal of Biological Chemistry, 276(28), 26405-26410. https://doi.org/10.1074/jbc.M102130200
Takei, K., Yamaya, T., & Sakakibara, H. (2004). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyse the biosynthesis of trans-zeatin. Journal of Biological Chemistry, 279(40), 41866-41872. https://doi.org/10.1074/jbc.M406337200
Tokunaga, H., Kojima, M., Kuroha, T., Ishida, T., Sugimoto, K., Kiba, T., & Sakakibara, H. (2012). Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant Journal, 69(2), 355-365. https://doi.org/10.1111/j.1365-313X.2011.04795.x
Ueguchi, C., Sato, S., Kato, T., & Tabata, S. (2001). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant and Cell Physiology, 42(7), 751-755. https://doi.org/10.1093/pcp/pce094
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034
Veerabagu, M., Elgass, K., Kirchler, T., Huppenberger, P., Harter, K., Chaban, C., & Mira-Rodado, V. (2012). The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. The Plant Journal, 72(5), 721-731. https://doi.org/10.1111/j.1365-313X.2012.05101.x
Werner, T., & Schmülling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology, 12(5), 527-538. https://doi.org/10.1016/j.pbi.2009.07.002
Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., … Mizuno, T. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant and Cell Physiology, 42(9), 1017-1023. https://doi.org/10.1093/pcp/pce127
Yan, Z., Liu, X., Ljung, K., Li, S., Zhao, W., Yang, F., … Tao, Y. (2017). Type B response regulators act as central integrators in transcriptional control of the auxin biosynthesis enzyme TAA1. Plant Physiology, 175(3), 1438-1454. https://doi.org/10.1104/pp.17.00878
Zhang, K., Novak, O., Wei, Z., Gou, M., Zhang, X., Yu, Y., … Liu, C. J. (2014). Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nature Communications, 5, 3274. https://doi.org/10.1038/ncomms4274