Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba)

. 2020 Jul 25 ; 9 (8) : . [epub] 20200725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32722434

Grantová podpora
R17A10001 Comisión Nacional de Investigación Científica y Tecnológica
COST Action CA17104 STRATAGEM Czech Ministry of Education, Youth and Sports INTER-COST LTC19007

Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC50 0.35 ± 0.01 mg/mL) was more effective than peumo extract (IC50 0.53 ± 0.02 mg/mL) in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC50 0.23 ± 0.02 mg/mL, P. aeruginosa IC50 0.29 ± 0.02 mg/mL) than peumo extracts (S. aureus IC50 0.47 ± 0.03 mg/mL, P. aeruginosa IC50 0.35 ± 0.01 mg/mL). Both extracts inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC50 0.56 ± 0.04 mg/mL, peumo IC50 0.59 ± 0.04 mg/mL). However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections.

Zobrazit více v PubMed

Schmeda-Hirschmann G., Jiménez-Aspee F., Theoduloz C., Ladio A. Patagonian berries as native food and medicine. J. Ethnopharmacol. 2019;214:111979. doi: 10.1016/j.jep.2019.111979. PubMed DOI

Fuentes L., Figueroa C.R., Valdenegro M., Vinet R. Patagonian Berries: Healthy Potential and the Path to Becoming Functional Foods. Foods. 2019;8:289. doi: 10.3390/foods8080289. PubMed DOI PMC

Hechenleitner P.V., Mf G., Thomas P., Echeverria C., Escobar B., Brownless P., Martínez C. Las plantas amenazadas del centro-sur de chile. Distribucón, Conservacíon y Propagación. Universidad Austral de Chile y Real Jardın Botá nico de Edimburgo; Valdivia, Chile: 2005. p. 188.

Simirgiotis M.J., Borquez J., Schmeda-Hirschmann G. Antioxidant capacity, polyphenolic content and tandem hplc-dad-esi/ms profiling of phenolic compounds from the south american berries Luma apiculata and L. Chequen. Food Chem. 2013;139:289–299. doi: 10.1016/j.foodchem.2013.01.089. PubMed DOI

Jara-Seguel P., Carcamo-Fincheira P., Palma-Rojas C., von Brand E. Karyotype morphology of Luma apiculata (dc.) burret (myrtaceae) Gayana Bot. 2013;70:395–397. doi: 10.4067/S0717-66432013000200017. DOI

Fuentes L., Valdenegro M., Gomez M.G., Ayala-Raso A., Quiroga E., Martinez J.P., Vinet R., Caballero E., Figueroa C.R. Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of south america. Food Chem. 2016;196:1239–1247. doi: 10.1016/j.foodchem.2015.10.003. PubMed DOI

Falkenberg S.S., Tarnow I., Guzman A., Molgaard P., Simonsen H.T. Mapuche herbal medicine inhibits blood platelet aggregation. Evidence-Based Complement. Altern. 2012;2012:1–9. doi: 10.1155/2012/647620. PubMed DOI PMC

Bohm L., Arismendi N., Ciampi L. Nematicidal activity of leaves of common shrub and tree species from southern chile against meloidogyne hapla. Cienc. Investig. Agrar. 2009;36:249–257. doi: 10.4067/S0718-16202009000200009. DOI

Pacheco P., Sierra J., Schmedahirschmann G., Potter C.W., Jones B.M., Moshref M. Antiviral activity of chilean medicinal plant-extracts. Phytother. Res. 1993;7:415–418. doi: 10.1002/ptr.2650070606. DOI

Giordano A., Fuentes-Barros G., Castro-Saavedra S., Gonzalez-Cooper A., Suarez-Rozas C., Salas-Norambuena J., Acevedo-Fuentes W., Leyton F., Tirapegui C., Echeverria J., et al. Variation of secondary metabolites in the aerial biomass of cryptocarya alba. Nat. Prod. Commun. 2019;14:11. doi: 10.1177/1934578X19856258. DOI

Bravo J., Carbonell V., Sepulveda B., Delporte C., Valdovinos C.E., Martin-Hernandez R., Higes M. Antifungal activity of the essential oil obtained from cryptocarya alba against infection in honey bees by nosema ceranae. J. Invertebr. Pathol. 2017;149:141–147. doi: 10.1016/j.jip.2017.08.012. PubMed DOI

Pinto J.J., Silva G., Figueroa I., Tapia M., Urbina A., Rodriguez J.C., Lagunes A. Insecticidal activity of powder and essential oil of cryptocarya alba (molina) looser against sitophilus zeamais motschulsky. Chil. J. Agric. Res. 2016;76:48–54. doi: 10.4067/S0718-58392016000100007. DOI

Di Cosmo D., Santander R., Urzua A., Palacios S.M., Rossi Y. Insecticidal effect of cryptocarya alba essential oil on the housefly, musca domestica L. Bol. Latinoam. Caribe Plantas Med. 2015;14:113–117.

Carmona E.R., Reyes-Diaz M., Parodi J., Inostroza-Blancheteau C. Antimutagenic evaluation of traditional medicinal plants from south america peumus boldus and cryptocarya alba using drosophila melanogaster. J. Toxicol. Environ. Health A. 2017;80:208–217. doi: 10.1080/15287394.2017.1279574. PubMed DOI

Simirgiotis M.J. Antioxidant capacity and hplc-dad-ms profiling of chilean peumo (Cryptocarya alba) fruits and comparison with german peumo (Crataegus monogyna) from southern chile. Molecules. 2013;18:2061–2080. doi: 10.3390/molecules18022061. PubMed DOI PMC

Schmeda-Hirschmann G., Razmilic I., Gutierrez M.I., Loyola J.I. Proximate composition and biological activity of food plants gathered by chilean amerindians. Econ. Bot. 1999;53:177–187. doi: 10.1007/BF02866496. DOI

Schmeda-Hirschmann G., Astudillo L., Bastida J., Codina C., De Arias A.R., Ferreira M.E., Inchaustti A., Yaluff G. Cryptofolione derivatives from cryptocarya alba fruits. J. Pharm. Pharmacol. 2001;53:563–567. doi: 10.1211/0022357011775686. PubMed DOI

Bansal S., Choudhary S., Sharma M., Kumar S., Lohan S., Bhardwaj V., Syan N., Jyoti S. Tea: A native source of antimicrobial agents. Food Res. Int. 2013;53:568–584. doi: 10.1016/j.foodres.2013.01.032. DOI

Shen X., Sun X., Xie Q., Liu H., Zhao Y., Pan Y., Hwang C.-A., Wu V.C.H. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of listeria monocytogenes and salmonella enteritidis. Food Control. 2014;35:159–165. doi: 10.1016/j.foodcont.2013.06.040. DOI

Sáez F., Narváez G.F., Morales M., Bello-Toledo H., Balbontin C., Figueroa C. Physiochemical and antibacterial characterization of fruits of citronella mucronata (cardiopteridaceae), pitavia punctata (rutaceae) and beilschmiedia berteroana (lauraceae), three endemic and threatened chilean trees. Fruits. 2017;72:87–96. doi: 10.17660/th2017/72.2.4. DOI

Cabrera G., Wilkens M., Giordano A., Bernardo Y., Delgado N. Chemical composition and antibacterial activity of red murta (Ugni molinae Turcz.) seeds: An undervalued chilean resource. J. Food Meas. Charact. 2020;14:1810–1821. doi: 10.1007/s11694-020-00428-x. DOI

Mason T.L. Inactivation of red beet beta glucan synthase by native and oxidized phenolic compounds. Phytochemistry. 1987;26:2197–2202. doi: 10.1016/S0031-9422(00)84683-X. DOI

Araya-Contreras T., Veas R., Escobar C.A., Machuca P., Bittner M. Antibacterial effect of Luma apiculata (dc.) burret extracts in clinically important bacteria. Int. J. Microbiol. 2019;2019:1–7. doi: 10.1155/2019/7803726. PubMed DOI PMC

Wikimedia Commons. [(accessed on 22 July 2020)]; Available online: https://commons.wikimedia.org/wiki/Main_Page.

Miller M.B., Bassler B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI

Timmermann B.N., Valcic S., Liu Y.L., Montenegro G. Flavonols from cryptocarya alba. Z. Naturforsch. C. 1995;50:898–899. doi: 10.1515/znc-1995-11-1223. DOI

Castro-Saavedra S., Fuentes-Barros G., Tirapegui C., Acevedo-Fuentes W., Cassels B.K., Barriga A., Vilches-Herrera M. Phytochemical analysis of alkaloids from the chilean endemic tree Cryptocarya alba. J. Chil. Chem. Soc. 2016;61:3076–3080. doi: 10.4067/S0717-97072016000300014. DOI

Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Sato Y., Suzaki S., Nishikawa T., Kihara M., Shibata H., Higuti T. Phytochemical flavones isolated from scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2000;72:483–488. doi: 10.1016/S0378-8741(00)00265-8. PubMed DOI

Rauha J.P., Remes S., Heinonen M., Hopia A., Kahkonen M., Kujala T., Pihlaja K., Vuorela H., Vuorela P. Antimicrobial effects of finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000;56:3–12. doi: 10.1016/S0168-1605(00)00218-X. PubMed DOI

Fiamegos Y.C., Kastritis P.L., Exarchou V., Han H., Bonvin A.M.J.J., Vervoort J., Lewis K., Hamblin M.R., Tegos G.P. Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from artemisia absinthium against gram-positive pathogenic bacteria. PLoS ONE. 2011;6:e18127. doi: 10.1371/journal.pone.0018127. PubMed DOI PMC

Santiago C., Pang E.L., Lim K.H., Loh H.S., Ting K.N. Inhibition of penicillin-binding protein 2a (pbp2a) in methicillin resistant staphylococcus aureus (mrsa) by combination of ampicillin and a bioactive fraction from duabanga grandiflora. BMC Complement. Altern. Med. 2015;15:178. doi: 10.1186/s12906-015-0699-z. PubMed DOI PMC

Rani N., Vijayakumar S., PTV L., Arunachalam A. Allosteric site-mediated active site inhibition of pbp2a using quercetin 3-o-rutinoside and its combination. J. Biomol. Struct. Dyn. 2016;34:1778–1796. doi: 10.1080/07391102.2015.1092096. PubMed DOI

Rani N., Vijayakumar S., Thanga Velan L.P., Arunachalam A. Quercetin 3-o-rutinoside mediated inhibition of pbp2a: Computational and experimental evidence to its anti-mrsa activity. Mol. Biosyst. 2014;10:3229–3237. doi: 10.1039/C4MB00319E. PubMed DOI

Karaman İ., Sahin F., Güllüce M., Ogutcu H., Sengül M., Adiguzel A. Antimicrobial activity of aqueous and methanol extracts of juniperus L. J. Ethnopharmacol. 2003;85:231–235. doi: 10.1016/S0378-8741(03)00006-0. PubMed DOI

Viktorova J., Dobiasova S., Rehorova K., Biedermann D., Kanova K., Seborova K., Vaclavikova R., Valentova K., Ruml T., Kren V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...